Sets
1. Insert Subset Symbol ($\subset$ or $\not\subset$)
Q1: Fill in the symbols $\subset$ or $\not\subset$.
(i) $\{ 2, 3, 4 \} \dots \{ 1, 2, 3, 4, 5 \}$
Answer: $\subset$
(ii) $\{ a, b, c \} \dots \{ b, c, d \}$
Answer: $\not\subset$
(iii) $\{x : x \text{ is a student of Class XI}\} \dots \{x : x \text{ is a student of your school}\}$
Answer: $\subset$
(iv) $\{x : x \text{ is a circle in plane}\} \dots \{x : x \text{ is a circle with radius 1}\}$
Answer: $\not\subset$
(v) $\{x : x \text{ is a triangle}\} \dots \{x : x \text{ is a rectangle}\}$
Answer: $\not\subset$
(vi) $\{x : x \text{ is an equilateral triangle}\} \dots \{x : x \text{ is a triangle}\}$
Answer: $\subset$
(vii) $\{x : x \text{ is an even natural number}\} \dots \{x : x \text{ is an integer}\}$
Answer: $\subset$
2. True or False Statements
Q2: Examine validity of statements.
(i) $\{ a, b \} \not\subset \{ b, c, a \}$
Statement says “not a subset”.
Result: False
(ii) $\{ a, e \} \subset \{ x : x \text{ is a vowel}\}$
Result: True
(iii) $\{ 1, 2, 3 \} \subset \{ 1, 3, 5 \}$
Result: False
(iv) $\{ a \} \subset \{ a, b, c \}$
Result: True
(v) $\{ a \} \in \{ a, b, c \}$
Result: False
(vi) $\{ x : x \text{ is even natural } < 6 \} \subset \{ x : x \text{ is natural number dividing 36} \}$
Set 2 (Divisors of 36) = {1, 2, 3, 4, 6, 9, 12, 18, 36}
{2, 4} is contained in Set 2.
Result: True
3. Analysis of Set $A = \{ 1, 2, \{ 3, 4 }, 5 \}$
Q3: Which statements are incorrect?
Note: In set A, the elements are: $1$, $2$, $\{3, 4\}$, and $5$.
$\{3, 4\}$ is treated as a single element.
Reason: $\{3, 4\}$ is an element, so we use $\in$. If we want a subset, we need $\{\{3, 4\}\}$.
(ii) $\{3, 4\} \in A$ Correct
(iii) $\{\{3, 4\}\} \subset A$ Correct
(iv) $1 \in A$ Correct
(v) $1 \subset A$ Incorrect
Reason: 1 is an element, not a set.
(vi) $\{1, 2, 5\} \subset A$ Correct
(vii) $\{1, 2, 5\} \in A$ Incorrect
Reason: $\{1, 2, 5\}$ is a subset, not an element listed inside A.
(viii) $\{1, 2, 3\} \subset A$ Incorrect
Reason: 3 is not an element of A (it is inside the element {3,4}).
(ix) $\phi \in A$ Incorrect
Reason: The null set is a subset of every set, but not an element unless explicitly listed.
(x) $\phi \subset A$ Correct
(xi) $\{\phi\} \subset A$ Incorrect
Reason: This would require $\phi \in A$.
4, 5, 6. Subsets & Intervals
Q4: Write down all subsets.
- (i) $\{a\}$: $\phi, \{a\}$
- (ii) $\{a, b\}$: $\phi, \{a\}, \{b\}, \{a, b\}$
- (iii) $\{1, 2, 3\}$: $\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}$
- (iv) $\phi$: $\phi$
Q5: Write as intervals.
- (i) $\{x : x \in R, -4 < x \le 6\}$: $(-4, 6]$
- (ii) $\{x : x \in R, -12 < x < -10\}$: $(-12, -10)$
- (iii) $\{x : x \in R, 0 \le x < 7\}$: $[0, 7)$
- (iv) $\{x : x \in R, 3 \le x \le 4\}$: $[3, 4]$
Q6: Write in set-builder form.
- (i) $(-3, 0)$: $\{x : x \in R, -3 < x < 0\}$
- (ii) $[6, 12]$: $\{x : x \in R, 6 \le x \le 12\}$
- (iii) $(6, 12]$: $\{x : x \in R, 6 < x \le 12\}$
- (iv) $[-23, 5)$: $\{x : x \in R, -23 \le x < 5\}$
7, 8. Universal Sets
Q7 & Q8: Universal Set Proposals.
Q7: Universal sets for Triangles
Proposal: The set of all triangles (or the set of all 2D polygons).
Q8: Universal set for A={1,3,5}, B={2,4,6}, C={0,2,4,6,8}
Combined elements: $\{0, 1, 2, 3, 4, 5, 6, 8\}$.
(i) $\{0…6\}$ (Missing 8) $\to$ No
(ii) $\phi$ $\to$ No
(iii) $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ $\to$ Yes (Contains all)
(iv) $\{1…8\}$ (Missing 0) $\to$ No
Answer: (iii)