Conic Sections

Miscellaneous Exercise Solutions
Q1
1. Parabolic reflector: 20 cm diameter, 5 cm deep. Find the focus.
Setup Let vertex be at origin $(0,0)$. Axis along x-axis. Eq: $y^2 = 4ax$.
Coordinates Diameter is 20, Depth is 5. The edge point is $(5, 10)$ or $(5, -10)$.
Substitute Put $(5, 10)$ in eq: $(10)^2 = 4a(5) \Rightarrow 100 = 20a$.
Solve a $a = 5$. Focus is at $(a, 0)$.
Focus is at (5, 0), i.e., 5cm from vertex.
Q2
2. Parabolic arch: 10m high, 5m wide at base. How wide is it 2m from the vertex?
Setup Vertex at origin $(0,0)$, axis vertical downwards. Eq: $x^2 = -4ay$.
Point Base width 5m, height 10m. End point is $(2.5, -10)$.
Find a $(2.5)^2 = -4a(-10) \Rightarrow 6.25 = 40a \Rightarrow 4a = \frac{6.25}{10} = 0.625$. Eq: $x^2 = -0.625y$.
Target Width at 2m from vertex (i.e., $y = -2$).
Calculate $x^2 = -0.625(-2) = 1.25 \Rightarrow x = \sqrt{1.25} \approx 1.118$.
Width = $2x \approx 2.23$ m
Q3
3. Suspension bridge cable: Span 100m. Longest wire 30m, shortest 6m. Find wire length 18m from middle.
Coordinate Vertex at lowest point of cable. Let vertex be $(0, 6)$ to match physical height, or shift origin. Let’s shift origin to lowest point $(0,0)$.
Logic Equation relative to vertex: $x^2 = 4ay$.
Endpoint Span 100m $\Rightarrow x=50$. Rise = $30 – 6 = 24$m. Point $(50, 24)$.
Find 4a $50^2 = 4a(24) \Rightarrow 2500 = 96a \Rightarrow 4a = \frac{2500}{24} = \frac{625}{6}$.
Target At $x=18$, find $y$. $18^2 = \frac{625}{6}y \Rightarrow 324 \times 6 = 625y \Rightarrow y = 3.11$.
Total Len Add the base height (6m). $3.11 + 6 = 9.11$.
Length = 9.11 m
Q4
4. Semi-ellipse arch: 8m wide, 2m high. Find height 1.5m from one end.
Eq Width $2a=8 \Rightarrow a=4$. Height $b=2$. $\frac{x^2}{16} + \frac{y^2}{4} = 1$.
Position 1.5m from end ($x=4$) means $x = 4 – 1.5 = 2.5$.
Substitute $\frac{2.5^2}{16} + \frac{y^2}{4} = 1 \Rightarrow \frac{6.25}{16} + \frac{y^2}{4} = 1$.
Solve $\frac{y^2}{4} = 1 – 0.3906 = 0.6094 \Rightarrow y^2 = 2.4375 \Rightarrow y \approx 1.56$.
Height $\approx$ 1.56 m
Q5
5. Rod length 12cm moving on axes. Locus of point P, 3cm from x-axis end.
Setup Ends $A(a,0)$ and $B(0,b)$. Length $AB=12$. Point $P(x,y)$ divides AB.
Ratio $AP = 3$. Since Total=12, $PB = 9$. Ratio $AP:PB = 1:3$.
Section $x = \frac{1(0) + 3(a)}{4} \Rightarrow a = \frac{4x}{3}$.
$y = \frac{1(b) + 3(0)}{4} \Rightarrow b = 4y$.
Condition $a^2 + b^2 = 12^2 = 144$. Substitute a and b.
Locus $(\frac{4x}{3})^2 + (4y)^2 = 144 \Rightarrow \frac{16x^2}{9} + 16y^2 = 144$.
Simplify Divide by 16: $\frac{x^2}{9} + y^2 = 9$ or $\frac{x^2}{81} + \frac{y^2}{9} = 1$.
$\frac{x^2}{81} + \frac{y^2}{9} = 1$ (Ellipse)
Q6
6. Area of triangle formed by vertex of $x^2 = 12y$ and ends of latus rectum.
Parabola $x^2 = 4ay \Rightarrow 4a = 12 \Rightarrow a = 3$. Focus $(0, 3)$.
Latus Rectum Passes through focus $y=3$. Endpoints: Substitute $y=3 \Rightarrow x^2 = 36 \Rightarrow x = \pm 6$. Points $(\pm 6, 3)$.
Vertices Triangle vertices: $(0,0), (6,3), (-6,3)$.
Area Base width = $6 – (-6) = 12$. Height = 3.
Area $= \frac{1}{2} \times 12 \times 3 = 18$.
18 sq. units
Q7
7. Man running: Sum of distances from two flag posts is 10m. Distance between posts 8m. Find equation.
Definition Locus of point where sum of distances to two fixed points (foci) is constant is an Ellipse.
Values $2a = 10 \Rightarrow a = 5$. Distance between foci $2c = 8 \Rightarrow c = 4$.
Find b $b^2 = a^2 – c^2 = 25 – 16 = 9$.
Equation Assuming center at origin, foci on x-axis: $\frac{x^2}{25} + \frac{y^2}{9} = 1$.
$\frac{x^2}{25} + \frac{y^2}{9} = 1$
Q8
8. Equilateral triangle inscribed in $y^2 = 4ax$, one vertex at vertex of parabola. Find side length.
Symmetry Due to symmetry, angle of side with x-axis is $30^\circ$.
Line Eq Line passing through origin with angle $30^\circ$: $y = x \tan 30^\circ = \frac{x}{\sqrt{3}}$.
Intersection Substitute line into parabola: $(\frac{x}{\sqrt{3}})^2 = 4ax \Rightarrow \frac{x^2}{3} = 4ax$.
Solve $x = 12a$. Then $y = \frac{12a}{\sqrt{3}} = 4\sqrt{3}a$.
Side Length Distance from origin $(0,0)$ to $(12a, 4\sqrt{3}a)$.
$L = \sqrt{(12a)^2 + (4\sqrt{3}a)^2} = \sqrt{144a^2 + 48a^2} = \sqrt{192a^2}$.
$8a\sqrt{3}$
learncbsehub.in