Statistics

Exercise 13.1 Solutions (Q1 – Q8)
Key Formulas:
Ungrouped Mean: $\bar{x} = \frac{\sum x_i}{N}$
Discrete Mean: $\bar{x} = \frac{\sum f_i x_i}{\sum f_i}$
Mean Deviation about Mean: $\text{M.D.}(\bar{x}) = \frac{\sum f_i |x_i – \bar{x}|}{N}$
Mean Deviation about Median: $\text{M.D.}(M) = \frac{\sum f_i |x_i – M|}{N}$
Q1-Q2
Find Mean Deviation about Mean for ungrouped data.

1. Data: 4, 7, 8, 9, 10, 12, 13, 17

Mean $\bar{x}$ $\frac{4+7+8+9+10+12+13+17}{8} = \frac{80}{8} = 10$.
Deviations $|x_i – 10|$: 6, 3, 2, 1, 0, 2, 3, 7.
Sum $\sum |x_i – \bar{x}| = 6+3+2+1+0+2+3+7 = 24$.
M.D.($\bar{x}$) = $\frac{24}{8} = 3$

2. Data: 38, 70, 48, 40, 42, 55, 63, 46, 54, 44

Mean $\bar{x}$ Sum = 500. $N = 10$. $\bar{x} = 50$.
Deviations |38-50|=12, |70-50|=20, 2, 10, 8, 5, 13, 4, 4, 6.
Sum Sum of absolute deviations = 84.
M.D.($\bar{x}$) = $\frac{84}{10} = 8.4$
Q3-Q4
Find Mean Deviation about Median for ungrouped data.

3. Data: 13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17

Sort 10, 11, 11, 12, 13, 13, 14, 16, 16, 17, 17, 18. (N=12).
Median Even N. Avg of 6th (13) and 7th (14) term = $\frac{13+14}{2} = 13.5$.
Sum Devs $\sum |x_i – 13.5| = 3.5 + 2.5 + 2.5 + 1.5 + 0.5 + 0.5 + 0.5 + 2.5 + 2.5 + 3.5 + 3.5 + 4.5 = 28$.
M.D.(M) = $\frac{28}{12} = 2.33$

4. Data: 36, 72, 46, 42, 60, 45, 53, 46, 51, 49

Sort 36, 42, 45, 46, 46, 49, 51, 53, 60, 72. (N=10).
Median Avg of 5th (46) and 6th (49) = 47.5.
Sum Devs $\sum |x_i – 47.5| = 11.5+5.5+2.5+1.5+1.5+1.5+3.5+5.5+12.5+24.5 = 70$.
M.D.(M) = $\frac{70}{10} = 7$
Q5-Q6
Find Mean Deviation about Mean for discrete frequency distribution.

5. Calculation Table

$x_i$ $f_i$ $f_i x_i$ $|x_i – \bar{x}|$ $f_i|x_i – \bar{x}|$
5735963
10440416
1569016
20360618
2551251155
Mean $\bar{x} = \frac{350}{25} = 14$.
M.D.($\bar{x}$) = $\frac{158}{25} = 6.32$

6. Calculation Table

$x_i$ $f_i$ $f_i x_i$ $|x_i – \bar{x}|$ $f_i|x_i – \bar{x}|$
1044040160
302472020480
5028140000
7016112020320
90872040320
Mean $\bar{x} = \frac{4000}{80} = 50$.
M.D.($\bar{x}$) = $\frac{1280}{80} = 16$
Q7-Q8
Find Mean Deviation about Median for discrete frequency distribution.

7. Calculation Table

$x_i$ $f_i$ c.f. $|x_i – M|$ $f_i|x_i – M|$
588216
761400
921624
1021836
12220510
15626848
Median $N=26$. Avg of 13th and 14th term. Both fall in c.f. 14 ($x_i=7$). Median = 7.
M.D.(M) = $\frac{84}{26} = 3.23$

8. Calculation Table

$x_i$ $f_i$ c.f. $|x_i – M|$ $f_i|x_i – M|$
15331545
2158945
27614318
3072100
35829540
Median $N=29$. Median is 15th term. 15th term falls in c.f. 21 ($x_i=30$). Median = 30.
M.D.(M) = $\frac{148}{29} = 5.1$

Statistics

Exercise 13.1 Solutions (Q9 – Q12)
Key Formulas for Continuous Data:
Mean: $\bar{x} = \frac{\sum f_i x_i}{\sum f_i}$
Median: $M = l + \frac{\frac{N}{2} – C}{f} \times h$
Mean Deviation about Mean: $\text{M.D.}(\bar{x}) = \frac{\sum f_i |x_i – \bar{x}|}{N}$
Mean Deviation about Median: $\text{M.D.}(M) = \frac{\sum f_i |x_i – M|}{N}$
Q9
9. Find Mean Deviation about Mean for Income Data.
Income Mid ($x_i$) $f_i$ $f_i x_i$ $|x_i – \bar{x}|$ $f_i|x_i – \bar{x}|$
0-1005042003081232
100-200150812002081664
200-30025092250108972
300-400350103500880
400-5004507315092644
500-60055052750192960
600-700650426002921168
700-800750322503921176
Mean $\bar{x} = \frac{17900}{50} = 358$.
M.D. $\text{M.D.}(\bar{x}) = \frac{7896}{50}$.
Mean Deviation = 157.92
Q10
10. Find Mean Deviation about Mean for Height of Boys.
Height Mid ($x_i$) $f_i$ $f_i x_i$ $|x_i – \bar{x}|$ $f_i|x_i – \bar{x}|$
95-105100990025.3227.7
105-11511013143015.3198.9
115-1251202631205.3137.8
125-1351303039004.7141.0
135-14514012168014.7176.4
145-15515010150024.7247.0
Mean $\bar{x} = \frac{12530}{100} = 125.3$.
M.D. $\text{M.D.}(\bar{x}) = \frac{1128.8}{100}$.
Mean Deviation = 11.288
Q11
11. Find Mean Deviation about Median for Marks of Girls.
Marks $f_i$ c.f. Mid ($x_i$) $|x_i – M|$ $f_i|x_i – M|$
0-1066522.86137.16
10-208141512.86102.88
20-301428252.8640.04
30-401644357.14114.24
40-504484517.1468.56
50-602505527.1454.28
Median Class $N/2 = 25$. Class 20-30. $l=20, C=14, f=14, h=10$.
Calc M $M = 20 + \frac{25-14}{14} \times 10 = 20 + \frac{110}{14} = 27.86$.
M.D. $\text{M.D.}(M) = \frac{517.16}{50}$.
Mean Deviation = 10.34
Q12
12. Find M.D. about Median for Age Distribution (Convert to continuous).
Class (Adj) $f_i$ c.f. Mid ($x_i$) $|x_i – M|$ $f_i|x_i – M|$
15.5-20.5551820100
20.5-25.5611231590
25.5-30.512232810120
30.5-35.5143733570
35.5-40.526633800
40.5-45.5127543560
45.5-50.516914810160
50.5-55.591005315135
Median Class $N/2 = 50$. Class 35.5-40.5. $l=35.5, C=37, f=26, h=5$.
Calc M $M = 35.5 + \frac{50-37}{26} \times 5 = 35.5 + \frac{13 \times 5}{26} = 35.5 + 2.5 = 38$.
M.D. $\text{M.D.}(M) = \frac{735}{100}$.
Mean Deviation = 7.35
learncbsehub.in