Relations & Functions
1. Equality of Ordered Pairs
Q1: If $(\frac{x}{3} + 1, y – \frac{2}{3}) = (\frac{5}{3}, \frac{1}{3})$, find x and y.
For x:
$\frac{x}{3} + 1 = \frac{5}{3} \Rightarrow \frac{x}{3} = \frac{5}{3} – 1 \Rightarrow \frac{x}{3} = \frac{2}{3}$
$\therefore x = 2$
For y:
$y – \frac{2}{3} = \frac{1}{3} \Rightarrow y = \frac{1}{3} + \frac{2}{3} \Rightarrow y = \frac{3}{3}$
$\therefore y = 1$
2 & 3. Cartesian Products ($A \times B$)
Q2: Find number of elements in $(A \times B)$ given $n(A)=3$ and $B=\{3,4,5\}$.
Given: $n(A) = 3$
Set $B = \{3, 4, 5\} \Rightarrow n(B) = 3$
Calculation: $n(A \times B) = 3 \times 3 = 9$
Answer: 9Q3: If $G = \{7, 8\}$ and $H = \{5, 4, 2\}$, find $G \times H$ and $H \times G$.
$G \times H$ (First element from G, second from H):
$H \times G$ (First element from H, second from G):
4. Statement Verification
Q4: State True/False. Rewrite false statements correctly.
(i) If $P = \{m, n\}$ and $Q = \{n, m\}$, then $P \times Q = \{(m, n), (n, m)\}$
FalseCorrect: $P \times Q = \{(m, n), (m, m), (n, n), (n, m)\}$
(ii) If A and B are non-empty sets, then $A \times B$ is a non-empty set of ordered pairs (x, y) such that $x \in A$ and $y \in B$.
True(iii) If $A = \{1, 2\}, B = \{3, 4\}$, then $A \times (B \cap \phi) = \phi$.
True$A \times \phi = \phi$.
5 & 6. Operations on Sets
Q5: If $A = \{-1, 1\}$, find $A \times A \times A$.
Step 1: Find $A \times A$
$A \times A = \{(-1, -1), (-1, 1), (1, -1), (1, 1)\}$
Step 2: Find $(A \times A) \times A$
Q6: If $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$, find A and B.
Set A consists of all first elements of the ordered pairs.
Set B consists of all second elements of the ordered pairs.
7. Distributive Laws
Given: $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}, D=\{5,6,7,8\}$
Q7(i): Verify $A \times (B \cap C) = (A \times B) \cap (A \times C)$
LHS: $B \cap C = \phi$ (No common elements).
$A \times \phi = \phi$.
RHS:
$A \times B = \{(1,1)…(2,4)\}$
$A \times C = \{(1,5)…(2,6)\}$
Intersection contains no common pairs. Result is $\phi$.
Q7(ii): Verify $A \times C$ is a subset of $B \times D$
$A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6)\}$
$B \times D$ contains all combinations of $\{1,2,3,4\}$ and $\{5,6,7,8\}$.
Since elements of A (1,2) are in B, and elements of C (5,6) are in D, all pairs of $A \times C$ are present in $B \times D$.
8. Subsets of Cartesian Product
Q8: List subsets of $A \times B$ where $A=\{1,2\}, B=\{3,4\}$.
$A \times B = \{(1, 3), (1, 4), (2, 3), (2, 4)\}$
Number of elements $n = 4$.
Number of subsets $= 2^n = 2^4 = 16$.
$\phi$
$\{(1,3)\}, \{(1,4)\}, \{(2,3)\}, \{(2,4)\}$
$\{(1,3), (1,4)\}, \{(1,3), (2,3)\} \dots$ (and so on)
9 & 10. Finding Sets from Partial Info
Q9: Find A and B given $n(A)=3, n(B)=2$ and pairs $(x,1), (y,2), (z,1)$.
Set A contains first components: $x, y, z$. Since $n(A)=3$ and x, y, z are distinct:
Set B contains second components: $1, 2$. Since $n(B)=2$:
Q10: Find set A and remaining elements of $A \times A$.
Given $n(A \times A) = 9 \implies n(A) = 3$.
Pairs present: $(-1, 0)$ and $(0, 1)$.
Elements in A must be $-1, 0, 1$. Since $n(A)=3$:
Remaining elements of $A \times A$:
Total pairs are $(-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1), (1,0), (1,1)$.
Removing given pairs $(-1, 0)$ and $(0, 1)$, the remaining are: