Trigonometric Functions
Sin/Cosec +
All +
Tan/Cot +
Cos/Sec +
1-5. Find Other 5 Trigonometric Functions
Q1: $\cos x = -\frac{1}{2}$, x in 3rd quadrant.
Given $\cos x = -\frac{1}{2}$.
Using $\sin^2 x + \cos^2 x = 1$:
$\sin^2 x = 1 – (-\frac{1}{2})^2 = 1 – \frac{1}{4} = \frac{3}{4}$
$\sin x = \pm \frac{\sqrt{3}}{2}$. Since x is in Q3, $\sin x$ is negative.
Q2: $\sin x = \frac{3}{5}$, x in 2nd quadrant.
Given $\sin x = \frac{3}{5}$.
Using $\sin^2 x + \cos^2 x = 1$:
$\cos^2 x = 1 – (\frac{3}{5})^2 = 1 – \frac{9}{25} = \frac{16}{25}$
$\cos x = \pm \frac{4}{5}$. Since x is in Q2, $\cos x$ is negative.
Q3: $\cot x = \frac{3}{4}$, x in 3rd quadrant.
Given $\cot x = \frac{3}{4} \Rightarrow \tan x = \frac{4}{3}$.
Using $\sec^2 x = 1 + \tan^2 x$:
$\sec^2 x = 1 + (\frac{4}{3})^2 = 1 + \frac{16}{9} = \frac{25}{9}$
$\sec x = \pm \frac{5}{3}$. Since x is in Q3, $\sec x$ is negative.
Q4: $\sec x = \frac{13}{5}$, x in 4th quadrant.
Given $\sec x = \frac{13}{5} \Rightarrow \cos x = \frac{5}{13}$.
Using $\sin^2 x + \cos^2 x = 1$:
$\sin^2 x = 1 – (\frac{5}{13})^2 = \frac{144}{169}$
$\sin x = \pm \frac{12}{13}$. Since x is in Q4, $\sin x$ is negative.
Q5: $\tan x = -\frac{5}{12}$, x in 2nd quadrant.
Given $\tan x = -\frac{5}{12} \Rightarrow \cot x = -\frac{12}{5}$.
Using $\sec^2 x = 1 + \tan^2 x$:
$\sec^2 x = 1 + (-\frac{5}{12})^2 = \frac{169}{144}$
$\sec x = \pm \frac{13}{12}$. Since x is in Q2, $\sec x$ is negative.
6-10. Values of Large Angles
Q6: $\sin 765^\circ$
Logic: $\sin(2n\pi + \theta) = \sin \theta$ or $\sin(n \times 360^\circ + \theta) = \sin \theta$.
Divide 765 by 360:
$765^\circ = 2 \times 360^\circ + 45^\circ$
Therefore, $\sin 765^\circ = \sin 45^\circ$
Q7: $\text{cosec} (-1410^\circ)$
Logic: $\text{cosec}(-\theta) = -\text{cosec } \theta$.
$-\text{cosec}(1410^\circ)$. Divide 1410 by 360:
$1410^\circ = 4 \times 360^\circ – 30^\circ$ (Using nearest multiple)
$\text{cosec}(4 \times 360^\circ – 30^\circ) = \text{cosec}(-30^\circ) = -\text{cosec } 30^\circ$.
So, $-\text{cosec}(1410^\circ) = -(-\text{cosec } 30^\circ) = \text{cosec } 30^\circ$.
Q8: $\tan \frac{19\pi}{3}$
Logic: $\tan(n\pi + \theta) = \tan \theta$.
$\frac{19\pi}{3} = 6\pi + \frac{\pi}{3}$.
Since $6\pi$ is a multiple of $\pi$, we are in the 1st quadrant cycle.
$\tan(6\pi + \frac{\pi}{3}) = \tan \frac{\pi}{3} = \tan 60^\circ$
Q9: $\sin (-\frac{11\pi}{3})$
Logic: $\sin(-\theta) = -\sin \theta$.
$-\sin(\frac{11\pi}{3})$. Break down $\frac{11\pi}{3}$:
$\frac{11\pi}{3} = 4\pi – \frac{\pi}{3}$.
$\sin(4\pi – \frac{\pi}{3}) = \sin(-\frac{\pi}{3}) = -\sin \frac{\pi}{3}$.
Total expression: $-(-\sin \frac{\pi}{3}) = \sin \frac{\pi}{3}$.
Q10: $\cot (-\frac{15\pi}{4})$
Logic: $\cot(-\theta) = -\cot \theta$.
$-\cot(\frac{15\pi}{4})$. Break down $\frac{15\pi}{4}$:
$\frac{15\pi}{4} = 4\pi – \frac{\pi}{4}$.
$\cot(4\pi – \frac{\pi}{4}) = \cot(-\frac{\pi}{4}) = -\cot \frac{\pi}{4}$.
Total expression: $-(-\cot \frac{\pi}{4}) = \cot \frac{\pi}{4}$.