Trigonometric Functions

NCERT Class 11 Maths • Exercise 3.2
II (S)
Sin/Cosec +
I (A)
All +
III (T)
Tan/Cot +
IV (C)
Cos/Sec +

1-5. Find Other 5 Trigonometric Functions

Q1: $\cos x = -\frac{1}{2}$, x in 3rd quadrant.
Quadrant III: Only Tan and Cot are Positive

Given $\cos x = -\frac{1}{2}$.

Using $\sin^2 x + \cos^2 x = 1$:

$\sin^2 x = 1 – (-\frac{1}{2})^2 = 1 – \frac{1}{4} = \frac{3}{4}$

$\sin x = \pm \frac{\sqrt{3}}{2}$. Since x is in Q3, $\sin x$ is negative.

$\sin x = -\frac{\sqrt{3}}{2}$
$\cos x = -\frac{1}{2}$
$\tan x = \sqrt{3}$
$\text{cosec } x = -\frac{2}{\sqrt{3}}$
$\sec x = -2$
$\cot x = \frac{1}{\sqrt{3}}$
Q2: $\sin x = \frac{3}{5}$, x in 2nd quadrant.
Quadrant II: Sin and Cosec are Positive

Given $\sin x = \frac{3}{5}$.

Using $\sin^2 x + \cos^2 x = 1$:

$\cos^2 x = 1 – (\frac{3}{5})^2 = 1 – \frac{9}{25} = \frac{16}{25}$

$\cos x = \pm \frac{4}{5}$. Since x is in Q2, $\cos x$ is negative.

$\sin x = \frac{3}{5}$
$\cos x = -\frac{4}{5}$
$\tan x = -\frac{3}{4}$
$\text{cosec } x = \frac{5}{3}$
$\sec x = -\frac{5}{4}$
$\cot x = -\frac{4}{3}$
Q3: $\cot x = \frac{3}{4}$, x in 3rd quadrant.
Quadrant III: Tan and Cot are Positive

Given $\cot x = \frac{3}{4} \Rightarrow \tan x = \frac{4}{3}$.

Using $\sec^2 x = 1 + \tan^2 x$:

$\sec^2 x = 1 + (\frac{4}{3})^2 = 1 + \frac{16}{9} = \frac{25}{9}$

$\sec x = \pm \frac{5}{3}$. Since x is in Q3, $\sec x$ is negative.

$\sin x = -\frac{4}{5}$
$\cos x = -\frac{3}{5}$
$\tan x = \frac{4}{3}$
$\text{cosec } x = -\frac{5}{4}$
$\sec x = -\frac{5}{3}$
$\cot x = \frac{3}{4}$
Q4: $\sec x = \frac{13}{5}$, x in 4th quadrant.
Quadrant IV: Cos and Sec are Positive

Given $\sec x = \frac{13}{5} \Rightarrow \cos x = \frac{5}{13}$.

Using $\sin^2 x + \cos^2 x = 1$:

$\sin^2 x = 1 – (\frac{5}{13})^2 = \frac{144}{169}$

$\sin x = \pm \frac{12}{13}$. Since x is in Q4, $\sin x$ is negative.

$\sin x = -\frac{12}{13}$
$\cos x = \frac{5}{13}$
$\tan x = -\frac{12}{5}$
$\text{cosec } x = -\frac{13}{12}$
$\sec x = \frac{13}{5}$
$\cot x = -\frac{5}{12}$
Q5: $\tan x = -\frac{5}{12}$, x in 2nd quadrant.
Quadrant II: Sin and Cosec are Positive

Given $\tan x = -\frac{5}{12} \Rightarrow \cot x = -\frac{12}{5}$.

Using $\sec^2 x = 1 + \tan^2 x$:

$\sec^2 x = 1 + (-\frac{5}{12})^2 = \frac{169}{144}$

$\sec x = \pm \frac{13}{12}$. Since x is in Q2, $\sec x$ is negative.

$\sin x = \frac{5}{13}$
$\cos x = -\frac{12}{13}$
$\tan x = -\frac{5}{12}$
$\text{cosec } x = \frac{13}{5}$
$\sec x = -\frac{13}{12}$
$\cot x = -\frac{12}{5}$

6-10. Values of Large Angles

Q6: $\sin 765^\circ$

Logic: $\sin(2n\pi + \theta) = \sin \theta$ or $\sin(n \times 360^\circ + \theta) = \sin \theta$.

Divide 765 by 360:

$765^\circ = 2 \times 360^\circ + 45^\circ$

Therefore, $\sin 765^\circ = \sin 45^\circ$

Answer: $\frac{1}{\sqrt{2}}$
Q7: $\text{cosec} (-1410^\circ)$

Logic: $\text{cosec}(-\theta) = -\text{cosec } \theta$.

$-\text{cosec}(1410^\circ)$. Divide 1410 by 360:

$1410^\circ = 4 \times 360^\circ – 30^\circ$ (Using nearest multiple)

$\text{cosec}(4 \times 360^\circ – 30^\circ) = \text{cosec}(-30^\circ) = -\text{cosec } 30^\circ$.

So, $-\text{cosec}(1410^\circ) = -(-\text{cosec } 30^\circ) = \text{cosec } 30^\circ$.

Answer: $2$
Q8: $\tan \frac{19\pi}{3}$

Logic: $\tan(n\pi + \theta) = \tan \theta$.

$\frac{19\pi}{3} = 6\pi + \frac{\pi}{3}$.

Since $6\pi$ is a multiple of $\pi$, we are in the 1st quadrant cycle.

$\tan(6\pi + \frac{\pi}{3}) = \tan \frac{\pi}{3} = \tan 60^\circ$

Answer: $\sqrt{3}$
Q9: $\sin (-\frac{11\pi}{3})$

Logic: $\sin(-\theta) = -\sin \theta$.

$-\sin(\frac{11\pi}{3})$. Break down $\frac{11\pi}{3}$:

$\frac{11\pi}{3} = 4\pi – \frac{\pi}{3}$.

$\sin(4\pi – \frac{\pi}{3}) = \sin(-\frac{\pi}{3}) = -\sin \frac{\pi}{3}$.

Total expression: $-(-\sin \frac{\pi}{3}) = \sin \frac{\pi}{3}$.

Answer: $\frac{\sqrt{3}}{2}$
Q10: $\cot (-\frac{15\pi}{4})$

Logic: $\cot(-\theta) = -\cot \theta$.

$-\cot(\frac{15\pi}{4})$. Break down $\frac{15\pi}{4}$:

$\frac{15\pi}{4} = 4\pi – \frac{\pi}{4}$.

$\cot(4\pi – \frac{\pi}{4}) = \cot(-\frac{\pi}{4}) = -\cot \frac{\pi}{4}$.

Total expression: $-(-\cot \frac{\pi}{4}) = \cot \frac{\pi}{4}$.

Answer: $1$
learncbsehub.in