NCERT Solutions
Class 12 • Chemistry • Chapter 1 • SolutionsDefinition: A solution is a homogeneous mixture of two or more substances whose composition can be varied within certain limits.
Types: Based on the physical state of the solvent, there are 9 types of solutions (3 Gaseous, 3 Liquid, 3 Solid).
- Gaseous Solutions:
- Gas in Gas (Air)
- Liquid in Gas (Chloroform with N2)
- Solid in Gas (Camphor in N2)
- Liquid Solutions:
- Gas in Liquid (Oxygen in water)
- Liquid in Liquid (Ethanol in water)
- Solid in Liquid (Glucose in water)
- Solid Solutions:
- Gas in Solid (H2 in Palladium)
- Liquid in Solid (Amalgam of Hg with Na)
- Solid in Solid (Alloys like Brass)
(i) Mole Fraction (\(x\)): Ratio of the number of moles of a component to the total number of moles of all components in the solution. \(x_A = n_A / (n_A + n_B)\).
(ii) Molality (\(m\)): Number of moles of solute per kilogram of the solvent. \(m = n_{solute} / W_{solvent (kg)}\).
(iii) Molarity (\(M\)): Number of moles of solute dissolved in one litre of solution. \(M = n_{solute} / V_{solution (L)}\).
(iv) Mass Percentage (w/w): Mass of the component per 100g of the solution. \(\% = (w_{solute} / w_{total}) \times 100\).
Mass % = 68% (68g \(HNO_3\) in 100g solution).
Density \(d = 1.504 \text{ g/mL}\).
Molar Mass of \(HNO_3 = 1 + 14 + 48 = 63 \text{ g/mol}\).
1. Moles of solute (\(n\)):
2. Volume of solution (\(V\)):
3. Molarity (\(M\)):
10% w/w means 10g Glucose (\(C_6H_{12}O_6\)) in 90g Water.
Molar Mass Glucose = 180 g/mol. Molar Mass Water = 18 g/mol.
\(n_{glu} = 10/180 = 0.0555 \text{ mol}\).
\(n_{wat} = 90/18 = 5.0 \text{ mol}\).
Vol of 100g solution = \(100 / 1.2 = 83.33 \text{ mL} = 0.0833 \text{ L}\).
Let moles of \(Na_2CO_3\) and \(NaHCO_3\) be \(x\).
\(M(Na_2CO_3) = 106\), \(M(NaHCO_3) = 84\).
\(106x + 84x = 1 \implies 190x = 1 \implies x = 1/190 = 0.00526 \text{ mol}\).
\(Na_2CO_3 + 2HCl \to 2NaCl + H_2O + CO_2\) (Needs 2 mol HCl)
\(NaHCO_3 + 1HCl \to NaCl + H_2O + CO_2\) (Needs 1 mol HCl)
Solute in Sol 1: \(300 \times 0.25 = 75 \text{ g}\).
Solute in Sol 2: \(400 \times 0.40 = 160 \text{ g}\).
Total Solute: \(75 + 160 = 235 \text{ g}\).
Total Solution Mass: \(300 + 400 = 700 \text{ g}\).
Molar mass \(C_2H_6O_2 = 24+6+32 = 62 \text{ g/mol}\).
\(n = 222.6 / 62 = 3.59 \text{ mol}\).
Mass solvent (water) = 200g = 0.2 kg.
Total mass = \(222.6 + 200 = 422.6 \text{ g}\).
Volume = \(422.6 / 1.072 = 394.2 \text{ mL} = 0.3942 \text{ L}\).
15 ppm means 15g in \(10^6\) g solution.
Since amount is very small, mass of solvent \(\approx\) mass of solution = \(10^6 \text{ g} = 10^3 \text{ kg}\).
Molar mass \(CHCl_3 = 12+1+3(35.5) = 119.5 \text{ g/mol}\).
Moles \(n = 15 / 119.5 = 0.1255 \text{ mol}\).
Alcohol and water both possess strong intermolecular Hydrogen Bonding. When mixed:
- The interaction between alcohol and water molecules (A-B) is slightly weaker than the interaction between alcohol-alcohol (A-A) and water-water (B-B) molecules.
- This leads to a Positive Deviation from Raoult’s Law.
- The solution volume increases slightly (\(\Delta V_{mix} > 0\)) and mixing is endothermic (\(\Delta H_{mix} > 0\)).
The dissolution of a gas in a liquid is an exothermic process (\(\Delta H_{dissolution} < 0\)) because gas molecules lose kinetic energy and form bonds with the solvent.
According to Le Chatelier’s Principle, increasing the temperature favors the endothermic direction (reverse process). Thus, the gas escapes from the liquid, and solubility decreases.
Henry’s Law: The partial pressure of the gas in vapor phase (\(p\)) is proportional to the mole fraction of the gas (\(x\)) in the solution. \(p = K_H x\).
Applications:
- Soda Bottles: Sealed under high pressure to increase solubility of \(CO_2\).
- Scuba Diving: Tanks diluted with Helium to prevent “The Bends” (release of nitrogen bubbles in blood upon surfacing).
- High Altitude: Low partial pressure of oxygen leads to low concentration in blood, causing Anoxia (weakness/confusion).
Since \(p \propto x\) and \(x \propto \text{mass}\) (for dilute solutions), we can say \(p \propto m\).
- Positive Deviation: Interaction A-B is weaker than A-A and B-B. Vapor pressure is higher than predicted.
\(\Delta_{mix}H > 0\) (Endothermic). Example: Ethanol + Acetone. - Negative Deviation: Interaction A-B is stronger than A-A and B-B. Vapor pressure is lower than predicted.
\(\Delta_{mix}H < 0\) (Exothermic). Example: Phenol + Aniline.
At normal boiling point, \(P^0 = 1.013 \text{ bar}\) (1 atm).
\(P_s = 1.004 \text{ bar}\).
Mass solute \(w_2 = 2 \text{ g}\), Mass water \(w_1 = 98 \text{ g}\). \(M_1 = 18\).
Relative lowering of Vapor Pressure: \(\frac{P^0 – P_s}{P^0} = \frac{n_2}{n_1} = \frac{w_2 M_1}{w_1 M_2}\).
\(M_{hept} (C_7H_{16}) = 100\), \(M_{oct} (C_8H_{18}) = 114\).
\(n_H = 26/100 = 0.26\). \(n_O = 35/114 = 0.307\).
Total moles = 0.567.
\(x_H = 0.26/0.567 = 0.458\), \(x_O = 0.542\).
Total Pressure \(P = x_H P^0_H + x_O P^0_O\).
1 molal means 1 mole solute in 1000g water.
Moles of water \(n_1 = 1000/18 = 55.55 \text{ mol}\). Moles solute \(n_2 = 1\).
Mole fraction \(x_2 = 1 / (1 + 55.55) = 1/56.55 = 0.0177\).
Relative Lowering: \(\frac{P^0 – P}{P^0} = x_2\).
Reduce TO 80% means \(P_s = 0.8 P^0\).
Lowering \(\frac{P^0 – 0.8P^0}{P^0} = 0.2 = x_2\).
Moles of Octane \(n_1 = 114 / 114 = 1 \text{ mol}\).
\(x_2 = \frac{n_2}{n_2 + 1} = 0.2 \implies n_2 = 0.2n_2 + 0.2 \implies 0.8n_2 = 0.2 \implies n_2 = 0.25 \text{ mol}\).
Let Molar Mass be \(M\). \(P^0\) be VP of pure water.
Case 1: 30g solute, 90g water (\(5\) mol).
\(\frac{P^0 – 2.8}{P^0} = \frac{30/M}{5} = \frac{6}{M}\) (Approx for dilute, or use exact \(\frac{n_2}{n_1+n_2}\)).
Using \(\frac{P^0 – P}{P} = \frac{n_2}{n_1}\) (Alternative form): \(\frac{P^0 – 2.8}{2.8} = \frac{30/M}{5} = \frac{6}{M}\).
Case 2: 30g solute, 108g water (\(6\) mol).
\(\frac{P^0 – 2.9}{2.9} = \frac{30/M}{6} = \frac{5}{M}\).
Dividing eq 1 by eq 2: \(\frac{P^0 – 2.8}{2.8} \times \frac{2.9}{P^0 – 2.9} = \frac{6}{5}\).
Solving yields \(P^0 \approx 3.4 \text{ kPa}\).
Sub back to find \(M \approx 23 \text{ g/mol}\).
\(\Delta T_f = 273.15 – 271 = 2.15 \text{ K}\).
\(\Delta T_f = K_f \times m\).
\(m = \frac{5/342}{0.095}\). So \(2.15 = K_f \frac{5}{342 \times 0.095}\).
\(\Delta T’_f = K_f \frac{5}{180 \times 0.095}\).
Ratio \(\frac{\Delta T’_f}{2.15} = \frac{342}{180} = 1.9\).
\(\Delta T’_f = 2.15 \times 1.9 = 4.085 \text{ K}\).
Freezing Point = \(273.15 – 4.085 = 269.065 \text{ K}\).
Formula: \(M_2 = \frac{K_f \times w_2 \times 1000}{\Delta T_f \times w_1}\).
For \(AB_2\): \(M_{AB2} = \frac{5.1 \times 1 \times 1000}{2.3 \times 20} = 110.87 \text{ g/mol}\).
For \(AB_4\): \(M_{AB4} = \frac{5.1 \times 1 \times 1000}{1.3 \times 20} = 196.15 \text{ g/mol}\).
\(A + 2B = 110.87\) and \(A + 4B = 196.15\).
Subtracting: \(2B = 85.28 \implies B = 42.64\).
\(A = 110.87 – 85.28 = 25.59\).
\(\pi = CRT\). Since T is constant, \(\pi \propto C\).
- n-hexane and n-octane: London Dispersion Forces (Both non-polar).
- I2 and CCl4: London Dispersion Forces (Both non-polar).
- NaClO4 and water: Ion-Dipole Interaction (Ionic solid in polar solvent).
- Methanol and acetone: Hydrogen Bonding (Dipole-Dipole).
- Acetonitrile and acetone: Dipole-Dipole Interaction.
n-octane is non-polar. “Like dissolves like”. Non-polar solutes will be most soluble.
Order: KCl < CH3OH < CH3CN < Cyclohexane.
Reason: KCl (Ionic) < CH3OH (Polar/H-bond) < CH3CN (Polar) < Cyclohexane (Non-polar).
- Insoluble: Toluene, Chloroform (Non-polar/Weak polar).
- Partially Soluble: Phenol, Pentanol (Polar -OH group but large non-polar chain/ring).
- Highly Soluble: Formic acid, Ethylene glycol (Strong H-bonding).
Moles \(Na^+ = 92 / 23 = 4 \text{ mol}\).
Mass of solution = \(1000 \text{ g water} + 92 \text{ g ions} = 1092 \text{ g}\).
Volume = \(1092 / 1.25 = 873.6 \text{ mL} = 0.8736 \text{ L}\).
\(CuS \rightleftharpoons Cu^{2+} + S^{2-}\).
\(K_{sp} = S \times S = S^2\).
Molar Mass = 311 g/mol.
\(1.5 \times 10^{-3} \text{ m}\) means \(1.5 \times 10^{-3}\) moles in 1000g water.
Mass of solute = \(1.5 \times 10^{-3} \times 311 = 0.4665 \text{ g}\).
Mass of solution = \(1000 + 0.4665 = 1000.4665 \text{ g}\).
We need 1.5 mg (\(1.5 \times 10^{-3} \text{ g}\)) of solute.
Mass solution required = \(\frac{1000.4665}{0.4665} \times 1.5 \times 10^{-3} \approx 3.22 \text{ g}\).
Molar Mass = 122 g/mol.
Moles = \(M \times V = 0.15 \times 0.25 = 0.0375 \text{ mol}\).
Mass = \(0.0375 \times 122 = 4.575 \text{ g}\).
Fluorine is more electronegative than Chlorine. Electron withdrawing groups increase the acidity (ionization) of the carboxylic acid.
Stronger acid \(\to\) Higher dissociation (\(\alpha\)) \(\to\) Higher van’t Hoff factor (\(i\)) \(\to\) Higher \(\Delta T_f\).
Molar Mass = 122.5 g/mol. \(n = 10/122.5 = 0.0816\).
\(m = 0.0816 / 0.25 = 0.326 \text{ m}\).
\(\alpha = \sqrt{K_a/m} = \sqrt{1.4 \times 10^{-3} / 0.326} \approx 0.0655\).
\(i = 1 + \alpha = 1.0655\).
\(\Delta T_f = i K_f m = 1.0655 \times 1.86 \times 0.326 \approx 0.65 \text{ K}\).
\(M = 78 \text{ g/mol}\). \(m = (19.5/78)/0.5 = 0.5 \text{ m}\).
Calculated \(\Delta T_f = 1.86 \times 0.5 = 0.93\).
\(i = \text{Observed} / \text{Calculated} = 1.0 / 0.93 = 1.0753\).
\(\alpha = i – 1 = 0.0753\).
\(K_a = \frac{C \alpha^2}{1-\alpha} \approx m \alpha^2\) (approx).
\(K_a = 0.5 \times (0.0753)^2 \approx 2.83 \times 10^{-3}\) (exact calc yields \(3.07 \times 10^{-3}\)).
\(n_2 = 25/180 = 0.139\). \(n_1 = 450/18 = 25\).
\(x_2 = 0.139 / 25.139 = 0.0055\).
Lowering = \(P^0 x_2 = 17.535 \times 0.0055 = 0.096\).
\(P = 17.535 – 0.096 = 17.44 \text{ mm Hg}\).
\(P = K_H x \implies x = P / K_H\).
\(x = 760 / (4.27 \times 10^5) = 178 \times 10^{-5} = 1.78 \times 10^{-3}\).
\(n_A = 100/140 = 0.714\). \(n_B = 1000/180 = 5.556\).
\(x_A = 0.114\). \(x_B = 0.886\).
\(P_{total} = P_A + P_B = P_A^0 x_A + P_B^0 x_B\).
\(475 = P_A^0(0.114) + 500(0.886)\).
\(475 = 0.114 P_A^0 + 443\).
\(32 = 0.114 P_A^0 \implies P_A^0 = 280.7 \text{ Torr}\).
\(P_A = 280.7 \times 0.114 = 32 \text{ Torr}\).
Analysis: Acetone and Chloroform form hydrogen bonds with each other, which are stronger than the individual intermolecular forces. This results in a decrease in vapor pressure.
Result: Negative Deviation from Raoult’s Law.
\(n_B = 80/78 = 1.026\). \(n_T = 100/92 = 1.087\).
\(x_B = 0.486\). \(x_T = 0.514\).
\(P_B = 50.71 \times 0.486 = 24.65\).
\(P_T = 32.06 \times 0.514 = 16.48\).
\(P_{total} = 41.13\).
\(y_B = P_B / P_{total} = 24.65 / 41.13 = 0.60\).
Total P = 10 atm = 7600 mm Hg.
\(p_{O2} = 0.2 \times 7600 = 1520 \text{ mm}\).
\(p_{N2} = 0.79 \times 7600 = 6004 \text{ mm}\).
\(x_{O2} = 1520 / (3.3 \times 10^7) = 4.6 \times 10^{-5}\).
\(x_{N2} = 6004 / (6.51 \times 10^7) = 9.2 \times 10^{-5}\).
\(\pi = iCRT = i \frac{n}{V} RT\).
\(n = \frac{\pi V}{i R T} = \frac{0.75 \times 2.5}{2.47 \times 0.0821 \times 300}\).
\(n = 1.875 / 60.83 \approx 0.0308 \text{ mol}\).
Mass = \(0.0308 \times 111 = 3.42 \text{ g}\).
\(K_2SO_4 \to 2K^+ + SO_4^{2-}\), so \(i = 3\).
Moles \(n = 0.025 / 174 \approx 1.44 \times 10^{-4}\).
\(\pi = 3 \times \frac{1.44 \times 10^{-4}}{2} \times 0.0821 \times 298 \approx 5.27 \times 10^{-3} \text{ atm}\).