NCERT Solutions Class 12 Chemistry Chapter 2: Electrochemistry (Detailed 2.1-2.18) | LearnCBSEHub.in

NCERT Solutions

Class 12 • Electrochemistry • Q2.1 – Q2.18
Question 2.1
Arrange the following metals in the order in which they displace each other from the solution of their salts: Al, Cu, Fe, Mg and Zn.
Analysis

A metal with a lower (more negative) standard reduction potential can displace a metal with a higher reduction potential from its salt solution. This follows the Electrochemical Series.

Standard Electrode Potentials (\(E^\circ\)):

  • Mg: -2.37 V
  • Al: -1.66 V
  • Zn: -0.76 V
  • Fe: -0.44 V
  • Cu: +0.34 V
Order of Displacement: Mg > Al > Zn > Fe > Cu
Question 2.2
Given standard electrode potentials: \(K^+/K = -2.93V\), \(Ag^+/Ag = 0.80V\), \(Hg^{2+}/Hg = 0.79V\), \(Mg^{2+}/Mg = -2.37V\), \(Cr^{3+}/Cr = -0.74V\). Arrange in increasing order of reducing power.
Concept

Reducing power is the ability to lose electrons (get oxidized). A metal with a lower reduction potential has a higher tendency to oxidize, thus a higher reducing power.

Order of \(E^\circ\) (Low to High):

  • K (-2.93 V) < Mg (-2.37 V) < Cr (-0.74 V) < Hg (0.79 V) < Ag (0.80 V)
Reducing Power: Ag < Hg < Cr < Mg < K
Question 2.3
Depict the galvanic cell in which the reaction \(Zn(s) + 2Ag^+(aq) \to Zn^{2+}(aq) + 2Ag(s)\) takes place. Further show: (i) Negatively charged electrode, (ii) Current carriers, (iii) Reaction at each electrode.
Cell Representation

\(Zn(s) | Zn^{2+}(aq) || Ag^+(aq) | Ag(s)\)

Answers

(i) Negatively charged electrode: The Anode (Zinc electrode) is negative.

(ii) Carriers of current: Electrons flow from Anode (Zn) to Cathode (Ag) in the external circuit. Ions flow in the internal circuit.

(iii) Reactions:
Anode (Oxidation): \(Zn(s) \to Zn^{2+}(aq) + 2e^-\)
Cathode (Reduction): \(Ag^+(aq) + e^- \to Ag(s)\)

Question 2.4
Calculate standard cell potentials, \(\Delta_r G^\circ\), and equilibrium constant for:
(i) \(2Cr(s) + 3Cd^{2+}(aq) \to 2Cr^{3+}(aq) + 3Cd(s)\)
(ii) \(Fe^{2+}(aq) + Ag^+(aq) \to Fe^{3+}(aq) + Ag(s)\)
(i) Reaction 1

\(E^\circ_{cell} = E^\circ_{cathode} – E^\circ_{anode} = E^\circ_{Cd} – E^\circ_{Cr}\)
\(= -0.40 – (-0.74) = 0.34 \text{ V}\).
\(n = 6\) electrons exchanged.

$$\Delta_r G^\circ = -nFE^\circ = -6 \times 96487 \times 0.34 = -196833 \text{ J/mol} \approx -196.8 \text{ kJ/mol}$$ $$\log K_c = \frac{nE^\circ}{0.059} = \frac{6 \times 0.34}{0.059} \approx 34.57 \implies K_c \approx 3.7 \times 10^{34}$$
(ii) Reaction 2

\(E^\circ_{cell} = E^\circ_{Ag} – E^\circ_{Fe^{3+}/Fe^{2+}} = 0.80 – 0.77 = 0.03 \text{ V}\).
\(n = 1\).

$$\Delta_r G^\circ = -1 \times 96487 \times 0.03 = -2894.6 \text{ J/mol} \approx -2.89 \text{ kJ/mol}$$ $$\log K_c = \frac{1 \times 0.03}{0.059} \approx 0.508 \implies K_c \approx 3.22$$
Question 2.5
Write Nernst equation and emf of the following cells at 298 K:
(i) \(Mg(s)|Mg^{2+}(0.001M)||Cu^{2+}(0.0001M)|Cu(s)\)
(ii) \(Fe(s)|Fe^{2+}(0.001M)||H^+(1M)|H_2(g)(1bar)|Pt(s)\)
(i) Mg-Cu Cell

\(E^\circ = 0.34 – (-2.37) = 2.71 \text{ V}\). \(n=2\).

$$E = E^\circ – \frac{0.059}{2} \log \frac{[Mg^{2+}]}{[Cu^{2+}]}$$ $$E = 2.71 – 0.0295 \log \frac{10^{-3}}{10^{-4}} = 2.71 – 0.0295 \log(10)$$ $$E = 2.71 – 0.0295 = 2.68 \text{ V}$$
(ii) Fe-H Cell

\(E^\circ = 0.00 – (-0.44) = 0.44 \text{ V}\). \(n=2\).

$$E = 0.44 – \frac{0.059}{2} \log \frac{[Fe^{2+}]}{[H^+]^2}$$ $$E = 0.44 – 0.0295 \log \frac{10^{-3}}{1^2} = 0.44 – 0.0295(-3)$$ $$E = 0.44 + 0.0885 = 0.5285 \text{ V}$$
Similarly solve (iii) & (iv). Results: (i) 2.68V, (ii) 0.53V.
Question 2.6
In button cells: \(Zn(s) + Ag_2O(s) + H_2O(l) \to Zn^{2+}(aq) + 2Ag(s) + 2OH^-(aq)\). Determine \(\Delta_r G^\circ\) and \(E^\circ\).
1. Standard E.M.F.

Anode: \(Zn \to Zn^{2+} + 2e^-\) (\(E^\circ_{Zn} = -0.76 \text{ V}\)).
Cathode: \(Ag_2O + H_2O + 2e^- \to 2Ag + 2OH^-\) (\(E^\circ_{Ag} = 0.344 \text{ V}\)).
\(E^\circ_{cell} = 0.344 – (-0.76) = 1.104 \text{ V}\).

2. Gibbs Energy

\(n = 2\).

$$\Delta_r G^\circ = -nFE^\circ = -2 \times 96487 \times 1.104$$ $$\Delta_r G^\circ = -213043 \text{ J/mol} \approx -2.13 \times 10^5 \text{ J/mol}$$
\(E^\circ = 1.104 \text{ V}\), \(\Delta G^\circ = -2.13 \times 10^5 \text{ J}\).
Question 2.7
Define conductivity and molar conductivity. Discuss their variation with concentration.
  • Conductivity (\(\kappa\)): Conductance of a solution of 1 cm length and 1 cm² cross-section. It decreases with decrease in concentration because the number of ions per unit volume decreases.
  • Molar Conductivity (\(\Lambda_m\)): Conducting power of all ions produced by 1 mole of electrolyte. It increases with decrease in concentration because the volume containing 1 mole increases, reducing interaction (weak) or increasing dissociation (weak).
Question 2.8
Conductivity of 0.20 M KCl is 0.0248 S/cm. Calculate molar conductivity.
Calculation

\(\kappa = 0.0248 \text{ S cm}^{-1}\), \(C = 0.20 \text{ M}\).

$$\Lambda_m = \frac{\kappa \times 1000}{C}$$ $$\Lambda_m = \frac{0.0248 \times 1000}{0.20} = \frac{24.8}{0.20} = 124 \text{ S cm}^2 \text{ mol}^{-1}$$
Result: \(124 \text{ S cm}^2 \text{ mol}^{-1}\)
Question 2.9
Resistance of 0.001 M KCl is \(1500 \Omega\). Conductivity is \(0.146 \times 10^{-3} \text{ S cm}^{-1}\). Calculate cell constant.
Formula

Cell Constant \(G^* = \text{Conductivity} \times \text{Resistance}\) (\(G^* = \kappa R\)).

$$G^* = (0.146 \times 10^{-3}) \times 1500$$ $$G^* = 0.146 \times 1.5 = 0.219 \text{ cm}^{-1}$$
Cell Constant = 0.219 cm⁻¹
Question 2.10
The conductivity of NaCl at different concentrations is given. Calculate \(\Lambda_m\) for all and find \(\Lambda_m^\circ\) by plotting against \(c^{1/2}\).
Method

1. Calculate \(\Lambda_m = (\kappa \times 1000)/C\) for each data point (Note units: convert S/m to S/cm if needed or keep consistent).
2. Calculate \(\sqrt{C}\) for each.
3. Plot \(\Lambda_m\) (y-axis) vs \(\sqrt{C}\) (x-axis).
4. Extrapolate the straight line to \(C=0\) to find intercept \(\Lambda_m^\circ\).

From plot extrapolation, \(\Lambda_m^\circ \approx 126.4 \text{ S cm}^2 \text{ mol}^{-1}\).
Question 2.11
Conductivity of 0.00241 M acetic acid is \(7.896 \times 10^{-5} \text{ S cm}^{-1}\). Calculate \(\Lambda_m\). If \(\Lambda_m^\circ = 390.5\), find dissociation constant.
1. Molar Conductivity
$$\Lambda_m = \frac{7.896 \times 10^{-5} \times 1000}{0.00241} = \frac{0.07896}{0.00241} \approx 32.76 \text{ S cm}^2 \text{ mol}^{-1}$$
2. Degree of Dissociation

\(\alpha = \frac{\Lambda_m}{\Lambda_m^\circ} = \frac{32.76}{390.5} \approx 0.084\).

3. Dissociation Constant
$$K_a = \frac{C \alpha^2}{1-\alpha} = \frac{0.00241 \times (0.084)^2}{1 – 0.084}$$ $$K_a = \frac{0.00241 \times 0.007056}{0.916} \approx 1.86 \times 10^{-5} \text{ mol/L}$$
\(K_a \approx 1.86 \times 10^{-5}\)
Question 2.12
How much charge is required for: (i) 1 mol \(Al^{3+} \to Al\), (ii) 1 mol \(Cu^{2+} \to Cu\), (iii) 1 mol \(MnO_4^- \to Mn^{2+}\)?

(i) \(Al^{3+} + 3e^- \to Al\): Requires 3F charge. \(3 \times 96487 = 289461 \text{ C}\).

(ii) \(Cu^{2+} + 2e^- \to Cu\): Requires 2F charge. \(2 \times 96487 = 192974 \text{ C}\).

(iii) \(MnO_4^- (+7) \to Mn^{2+} (+2)\): Change is 5 units. Requires 5F. \(5 \times 96487 = 482435 \text{ C}\).

Question 2.13
How much electricity in Faraday is required to produce: (i) 20g Ca from molten \(CaCl_2\), (ii) 40g Al from molten \(Al_2O_3\)?
(i) Calcium

\(Ca^{2+} + 2e^- \to Ca\). Molar mass = 40g.
40g requires 2F. So, 20g requires 1F.

(ii) Aluminium

\(Al^{3+} + 3e^- \to Al\). Molar mass = 27g.
27g requires 3F.
40g requires \(\frac{3}{27} \times 40 = \frac{40}{9} \approx 4.44 \text{ F}\).

Question 2.14
How much electricity (Coulombs) for oxidation of: (i) 1 mol \(H_2O \to O_2\), (ii) 1 mol \(FeO \to Fe_2O_3\)?
(i) Water

\(2H_2O \to O_2 + 4H^+ + 4e^-\).
2 moles water require 4F. So, 1 mol requires 2F.
\(2 \times 96487 = 192974 \text{ C}\).

(ii) Ferrous to Ferric

\(Fe^{2+} \to Fe^{3+} + e^-\).
1 mol requires 1F = 96487 C.

Question 2.15
Solution of \(Ni(NO_3)_2\) electrolysed with 5A for 20 min. Mass of Ni deposited?
Calculation

\(I = 5 \text{ A}, t = 20 \times 60 = 1200 \text{ s}\).
\(Q = It = 5 \times 1200 = 6000 \text{ C}\).
Reaction: \(Ni^{2+} + 2e^- \to Ni\). (Molar mass = 58.7 g/mol).
2F (192974 C) deposits 58.7 g.
6000 C deposits \(\frac{58.7}{192974} \times 6000 \approx 1.825 \text{ g}\).

Mass of Nickel = 1.825 g
Question 2.16
Three cells A (ZnSO4), B (AgNO3), C (CuSO4) in series. 1.5 A current passed until 1.45 g Ag deposited. Find time and mass of Cu and Zn.
1. Time Calculation

Ag: \(Ag^+ + e^- \to Ag\) (108 g/mol).
Charge \(Q = \frac{1.45}{108} \times 96487 \approx 1295.6 \text{ C}\).
Time \(t = Q/I = 1295.6 / 1.5 \approx 863.7 \text{ s}\) (approx 14.4 min).

2. Mass of Cu and Zn

Cu (Valency 2, M=63.5): Mass \(= \frac{Q}{2F} \times 63.5 = \frac{1295.6}{2 \times 96487} \times 63.5 \approx 0.426 \text{ g}\).

Zn (Valency 2, M=65.3): Mass \(= \frac{1295.6}{2 \times 96487} \times 65.3 \approx 0.438 \text{ g}\).

Question 2.17
Predict feasibility using standard potentials: (i) \(Fe^{3+}\) and \(I^-\), etc.

A reaction is feasible if \(E^\circ_{cell} > 0\).

  • (i) \(2Fe^{3+} + 2I^- \to 2Fe^{2+} + I_2\): \(E^\circ = 0.77 – 0.54 = 0.23 \text{ V}\). Feasible.
  • (ii) \(2Ag^+ + Cu \to 2Ag + Cu^{2+}\): \(E^\circ = 0.80 – 0.34 = 0.46 \text{ V}\). Feasible.
  • (iii) \(Fe^{3+} + Br^-\): \(E^\circ = 0.77 – 1.09 = -0.32 \text{ V}\). Not Feasible.
Question 2.18
Predict products of electrolysis: (i) Aqueous \(AgNO_3\) (Silver electrodes), (ii) Aqueous \(AgNO_3\) (Platinum), etc.
  • (i) Ag electrodes: Cathode: Ag deposited. Anode: Ag dissolves (Oxidation of Ag electrode).
  • (ii) Pt electrodes: Cathode: Ag deposited. Anode: \(O_2\) gas evolved (Water oxidation preferred over nitrate).
  • (iii) Dilute \(H_2SO_4\): Cathode: \(H_2\) gas. Anode: \(O_2\) gas.
  • (iv) Aqueous \(CuCl_2\): Cathode: Cu deposited. Anode: \(Cl_2\) gas evolved.
learncbsehub.in