NCERT Solutions
Class 12 • Electrochemistry • Q2.1 – Q2.18A metal with a lower (more negative) standard reduction potential can displace a metal with a higher reduction potential from its salt solution. This follows the Electrochemical Series.
Standard Electrode Potentials (\(E^\circ\)):
- Mg: -2.37 V
- Al: -1.66 V
- Zn: -0.76 V
- Fe: -0.44 V
- Cu: +0.34 V
Reducing power is the ability to lose electrons (get oxidized). A metal with a lower reduction potential has a higher tendency to oxidize, thus a higher reducing power.
Order of \(E^\circ\) (Low to High):
- K (-2.93 V) < Mg (-2.37 V) < Cr (-0.74 V) < Hg (0.79 V) < Ag (0.80 V)
\(Zn(s) | Zn^{2+}(aq) || Ag^+(aq) | Ag(s)\)
(i) Negatively charged electrode: The Anode (Zinc electrode) is negative.
(ii) Carriers of current: Electrons flow from Anode (Zn) to Cathode (Ag) in the external circuit. Ions flow in the internal circuit.
(iii) Reactions:
Anode (Oxidation): \(Zn(s) \to Zn^{2+}(aq) + 2e^-\)
Cathode (Reduction): \(Ag^+(aq) + e^- \to Ag(s)\)
(i) \(2Cr(s) + 3Cd^{2+}(aq) \to 2Cr^{3+}(aq) + 3Cd(s)\)
(ii) \(Fe^{2+}(aq) + Ag^+(aq) \to Fe^{3+}(aq) + Ag(s)\)
\(E^\circ_{cell} = E^\circ_{cathode} – E^\circ_{anode} = E^\circ_{Cd} – E^\circ_{Cr}\)
\(= -0.40 – (-0.74) = 0.34 \text{ V}\).
\(n = 6\) electrons exchanged.
\(E^\circ_{cell} = E^\circ_{Ag} – E^\circ_{Fe^{3+}/Fe^{2+}} = 0.80 – 0.77 = 0.03 \text{ V}\).
\(n = 1\).
(i) \(Mg(s)|Mg^{2+}(0.001M)||Cu^{2+}(0.0001M)|Cu(s)\)
(ii) \(Fe(s)|Fe^{2+}(0.001M)||H^+(1M)|H_2(g)(1bar)|Pt(s)\)
\(E^\circ = 0.34 – (-2.37) = 2.71 \text{ V}\). \(n=2\).
\(E^\circ = 0.00 – (-0.44) = 0.44 \text{ V}\). \(n=2\).
Anode: \(Zn \to Zn^{2+} + 2e^-\) (\(E^\circ_{Zn} = -0.76 \text{ V}\)).
Cathode: \(Ag_2O + H_2O + 2e^- \to 2Ag + 2OH^-\) (\(E^\circ_{Ag} = 0.344 \text{ V}\)).
\(E^\circ_{cell} = 0.344 – (-0.76) = 1.104 \text{ V}\).
\(n = 2\).
- Conductivity (\(\kappa\)): Conductance of a solution of 1 cm length and 1 cm² cross-section. It decreases with decrease in concentration because the number of ions per unit volume decreases.
- Molar Conductivity (\(\Lambda_m\)): Conducting power of all ions produced by 1 mole of electrolyte. It increases with decrease in concentration because the volume containing 1 mole increases, reducing interaction (weak) or increasing dissociation (weak).
\(\kappa = 0.0248 \text{ S cm}^{-1}\), \(C = 0.20 \text{ M}\).
Cell Constant \(G^* = \text{Conductivity} \times \text{Resistance}\) (\(G^* = \kappa R\)).
1. Calculate \(\Lambda_m = (\kappa \times 1000)/C\) for each data point (Note units: convert S/m to S/cm if needed or keep consistent).
2. Calculate \(\sqrt{C}\) for each.
3. Plot \(\Lambda_m\) (y-axis) vs \(\sqrt{C}\) (x-axis).
4. Extrapolate the straight line to \(C=0\) to find intercept \(\Lambda_m^\circ\).
\(\alpha = \frac{\Lambda_m}{\Lambda_m^\circ} = \frac{32.76}{390.5} \approx 0.084\).
(i) \(Al^{3+} + 3e^- \to Al\): Requires 3F charge. \(3 \times 96487 = 289461 \text{ C}\).
(ii) \(Cu^{2+} + 2e^- \to Cu\): Requires 2F charge. \(2 \times 96487 = 192974 \text{ C}\).
(iii) \(MnO_4^- (+7) \to Mn^{2+} (+2)\): Change is 5 units. Requires 5F. \(5 \times 96487 = 482435 \text{ C}\).
\(Ca^{2+} + 2e^- \to Ca\). Molar mass = 40g.
40g requires 2F. So, 20g requires 1F.
\(Al^{3+} + 3e^- \to Al\). Molar mass = 27g.
27g requires 3F.
40g requires \(\frac{3}{27} \times 40 = \frac{40}{9} \approx 4.44 \text{ F}\).
\(2H_2O \to O_2 + 4H^+ + 4e^-\).
2 moles water require 4F. So, 1 mol requires 2F.
\(2 \times 96487 = 192974 \text{ C}\).
\(Fe^{2+} \to Fe^{3+} + e^-\).
1 mol requires 1F = 96487 C.
\(I = 5 \text{ A}, t = 20 \times 60 = 1200 \text{ s}\).
\(Q = It = 5 \times 1200 = 6000 \text{ C}\).
Reaction: \(Ni^{2+} + 2e^- \to Ni\). (Molar mass = 58.7 g/mol).
2F (192974 C) deposits 58.7 g.
6000 C deposits \(\frac{58.7}{192974} \times 6000 \approx 1.825 \text{ g}\).
Ag: \(Ag^+ + e^- \to Ag\) (108 g/mol).
Charge \(Q = \frac{1.45}{108} \times 96487 \approx 1295.6 \text{ C}\).
Time \(t = Q/I = 1295.6 / 1.5 \approx 863.7 \text{ s}\) (approx 14.4 min).
Cu (Valency 2, M=63.5): Mass \(= \frac{Q}{2F} \times 63.5 = \frac{1295.6}{2 \times 96487} \times 63.5 \approx 0.426 \text{ g}\).
Zn (Valency 2, M=65.3): Mass \(= \frac{1295.6}{2 \times 96487} \times 65.3 \approx 0.438 \text{ g}\).
A reaction is feasible if \(E^\circ_{cell} > 0\).
- (i) \(2Fe^{3+} + 2I^- \to 2Fe^{2+} + I_2\): \(E^\circ = 0.77 – 0.54 = 0.23 \text{ V}\). Feasible.
- (ii) \(2Ag^+ + Cu \to 2Ag + Cu^{2+}\): \(E^\circ = 0.80 – 0.34 = 0.46 \text{ V}\). Feasible.
- (iii) \(Fe^{3+} + Br^-\): \(E^\circ = 0.77 – 1.09 = -0.32 \text{ V}\). Not Feasible.
- (i) Ag electrodes: Cathode: Ag deposited. Anode: Ag dissolves (Oxidation of Ag electrode).
- (ii) Pt electrodes: Cathode: Ag deposited. Anode: \(O_2\) gas evolved (Water oxidation preferred over nitrate).
- (iii) Dilute \(H_2SO_4\): Cathode: \(H_2\) gas. Anode: \(O_2\) gas.
- (iv) Aqueous \(CuCl_2\): Cathode: Cu deposited. Anode: \(Cl_2\) gas evolved.