NCERT Solutions
Class 12 • Chemistry • Chapter 3 • Chemical Kinetics(i) \(3NO(g) \to N_2O(g)\) Rate = \(k[NO]^2\)
(ii) \(H_2O_2 + 3I^- + 2H^+ \to 2H_2O + I_3^-\) Rate = \(k[H_2O_2][I^-]\)
(iii) \(CH_3CHO \to CH_4 + CO\) Rate = \(k[CH_3CHO]^{3/2}\)
(iv) \(C_2H_5Cl \to C_2H_4 + HCl\) Rate = \(k[C_2H_5Cl]\)
Order (\(n\)) is the sum of powers of concentration terms in the rate law.
Units of \(k = (\text{mol L}^{-1})^{1-n} \text{ s}^{-1}\).
- (i) Order = 2. Unit: \((\text{mol L}^{-1})^{-1} \text{s}^{-1} = \text{L mol}^{-1} \text{s}^{-1}\).
- (ii) Order = 1 + 1 = 2. Unit: \(\text{L mol}^{-1} \text{s}^{-1}\).
- (iii) Order = 1.5 (3/2). Unit: \((\text{mol L}^{-1})^{-0.5} \text{s}^{-1} = \text{L}^{1/2} \text{mol}^{-1/2} \text{s}^{-1}\).
- (iv) Order = 1. Unit: \(\text{s}^{-1}\).
Reacted A = \(0.1 – 0.06 = 0.04 \text{ M}\).
From stoichiometry (\(2A + B\)), B reacted = \(0.04 / 2 = 0.02 \text{ M}\).
Remaining \([B] = 0.2 – 0.02 = 0.18 \text{ M}\).
Final Rate = \(3.89 \times 10^{-9} \text{ M/s}\)
Reaction: \(2NH_3 \to N_2 + 3H_2\).
For zero order, Rate = \(k\).
Rate of production of \(N_2 = k = 2.5 \times 10^{-4} \text{ M s}^{-1}\).
Rate of production of \(H_2 = 3k = 3 \times 2.5 \times 10^{-4} = 7.5 \times 10^{-4} \text{ M s}^{-1}\).
Rate: Change in pressure per unit time = bar min⁻¹.
Rate Constant (k):
Rate = \(k (P)^{3/2}\) \(\implies\) bar min⁻¹ = \(k (\text{bar})^{3/2}\).
\(k = \text{bar} \text{ min}^{-1} \text{ bar}^{-1.5} = \textbf{bar}^{-1/2} \textbf{ min}^{-1}\).
- Concentration of reactants: Higher concentration usually increases rate.
- Temperature: Rate generally increases with temperature.
- Nature of reactants: Ionic reactions are faster than covalent ones.
- Catalyst: Increases rate by lowering activation energy.
- Surface Area: For solids, larger surface area increases rate.
- Exposure to light: Affects photochemical reactions.
Rate \(r = k[A]^2\).
- (i) Doubled: \([A’] = 2[A]\). \(r’ = k(2A)^2 = 4k[A]^2 = 4r\). (Increases 4 times).
- (ii) Halved: \([A’] = [A]/2\). \(r’ = k(A/2)^2 = \frac{1}{4}k[A]^2 = \frac{1}{4}r\). (Reduced to 1/4th).
The rate constant generally increases with an increase in temperature. For a chemical reaction, the rate constant nearly doubles for every \(10^\circ\) rise in temperature.
Quantitative representation (Arrhenius Equation):
Where \(k\) = rate constant, \(A\) = Arrhenius factor, \(E_a\) = Activation energy, \(R\) = Gas constant, \(T\) = Temperature.
(i) Equation: \(\text{Rate} = k[A][B]^2\).
(ii) B Tripled: \(r’ = k[A](3B)^2 = 9k[A][B]^2 = 9r\). (Increases 9 times).
(iii) Both Doubled: \(r” = k(2A)(2B)^2 = k(2A)(4B^2) = 8k[A][B]^2 = 8r\). (Increases 8 times).
Exp 1: [A]=0.2, [B]=0.3, r=5.07e-5
Exp 2: [A]=0.2, [B]=0.1, r=5.07e-5
Exp 3: [A]=0.4, [B]=0.05, r=1.43e-4
Comparing Exp 1 & 2: [A] is constant. [B] changes from 0.3 to 0.1. Rate stays \(5.07 \times 10^{-5}\). Since rate is independent of [B], order wrt B is 0.
Comparing Exp 1 & 3: Rate law \(r = k[A]^x\).
\(\frac{1.43 \times 10^{-4}}{5.07 \times 10^{-5}} = \left(\frac{0.4}{0.2}\right)^x\).
\(2.82 \approx 2^x \implies x \approx 1.5\).
Compare I and IV: [B] is constant (0.1). [A] changes \(0.1 \to 0.4\) (4x). Rate changes \(6.0 \times 10^{-3} \to 2.40 \times 10^{-2}\) (4x). Since rate \(\propto [A]\), order wrt A = 1.
Compare II and III: [A] is constant (0.3). [B] changes \(0.2 \to 0.4\) (2x). Rate changes \(7.2 \times 10^{-2} \to 2.88 \times 10^{-1}\) (4x). Since rate \(\propto [B]^2\), order wrt B = 2.
Rate Law: \(\text{Rate} = k[A][B]^2\).
Using Exp I: \(6.0 \times 10^{-3} = k(0.1)(0.1)^2 = k(0.001)\).
Rate = \(k[A]\). From Exp I: \(2.0 \times 10^{-2} = k(0.1) \implies k = 0.2 \text{ min}^{-1}\).
- Exp II: Rate = \(4.0 \times 10^{-2}\). Rate = \(0.2 [A] \implies [A] = 0.2 \text{ M}\).
- Exp III: Rate = \(0.2 \times 0.4 = 8.0 \times 10^{-2} \text{ M min}^{-1}\).
- Exp IV: Rate = \(2.0 \times 10^{-2}\). Same as Exp I, so \([A] = 0.1 \text{ M}\).
Formula: \(t_{1/2} = \frac{0.693}{k}\).
- (i) \(0.693/200 = 3.465 \times 10^{-3} \text{ s}\).
- (ii) \(0.693/2 = 0.3465 \text{ min}\).
- (iii) \(0.693/4 = 0.173 \text{ years}\).
Formula: \(t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}\).
Here \([R]_0 = 100, [R] = 80\).
- (i) Plot [A] vs t: Curve shows exponential decay.
- (ii) Half-life from graph: Initial = 1.63. Half = 0.815. Corresponds to \(t \approx 1440 \text{ s}\).
- (iii) Graph log[A] vs t: Yields a straight line, confirming First Order.
- (iv) Rate Law: Rate = \(k[N_2O_5]\).
- (v) Rate Constant: Slope of log plot = \(-k/2.303\). Slope \(\approx -2.09 \times 10^{-4}\).
\(k = 2.303 \times 2.09 \times 10^{-4} = 4.82 \times 10^{-4} \text{ s}^{-1}\). - (vi) Calc Half-life: \(0.693 / 4.82 \times 10^{-4} \approx 1438 \text{ s}\). (Matches graph).
\([R] = [R]_0 / 16\).
Using \(t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}\).
\(k = 0.693 / 28.1 = 0.02466 \text{ yr}^{-1}\).
For 99% completion: \([R] = 0.01 [R]_0\).
\(t_{99} = \frac{2.303}{k} \log \frac{100}{1} = \frac{2.303}{k} \times 2\).
For 90% completion: \([R] = 0.10 [R]_0\).
\(t_{90} = \frac{2.303}{k} \log \frac{100}{10} = \frac{2.303}{k} \times 1\).
Ratio: \(t_{99} / t_{90} = 2 / 1 = 2\).
\([R]_0 = 100, [R] = 70\). \(t = 40 \text{ min}\).
\(A \to B + C\). \(P_0 = 35\).
At time t, \(P_{total} = P_0 + p\). Reactant Pressure \(P_A = P_0 – p = P_0 – (P_t – P_0) = 2P_0 – P_t\).
At \(t=360\), \(P_t = 54\).
\(P_A = 2(35) – 54 = 70 – 54 = 16 \text{ mm}\).
\(P_A = 2P_0 – P_t\). At t=100, \(P_t = 0.6\).
\(P_A = 2(0.5) – 0.6 = 0.4 \text{ atm}\).
\(P_{SO2Cl2} = 2(0.5) – 0.65 = 0.35 \text{ atm}\).
Rate = \(k \times P_{SO2Cl2} = 2.23 \times 10^{-3} \times 0.35 = 7.8 \times 10^{-4} \text{ atm s}^{-1}\).
1. Convert T to Kelvin and k to ln k.
2. Plot ln k (y) vs 1/T (x).
3. Slope = \(-E_a/R\). Intercept = ln A.
Using data points (e.g., T=0°C and T=20°C):
Slope \(\approx -12300 \text{ K}\). \(E_a = -\text{Slope} \times R = 12300 \times 8.314 \approx 102 \text{ kJ/mol}\).
Pre-exponential factor \(A\) can be calculated from \(k = A e^{-E_a/RT}\).
\(\log k = \log A – \frac{E_a}{2.303 RT}\).
\([A] = [A]_0 e^{-kt}\).
\(k = 0.693 / 3 = 0.231 \text{ hr}^{-1}\).
Using \([R] = [R]_0 e^{-kt}\):
Compare with \(k = A e^{-E_a/RT}\).
\(E_a/R = 28000 \text{ K}\).
Compare with \(\log k = \log A – \frac{E_a}{2.303 RT}\).
\(\frac{E_a}{2.303 R} = 1.25 \times 10^4\).
\(E_a = 1.25 \times 10^4 \times 2.303 \times 8.314 = 239.34 \text{ kJ/mol}\).
\(k = 0.693 / (256 \times 60) = 4.51 \times 10^{-5} \text{ s}^{-1}\).
\(\log(4.51 \times 10^{-5}) = 14.34 – \frac{1.25 \times 10^4}{T}\).
\(-4.35 = 14.34 – \frac{12500}{T} \implies \frac{12500}{T} = 18.69\).
\(T = 12500 / 18.69 \approx 669 \text{ K}\).
\(\log \frac{k_2}{k_1} = \frac{E_a}{2.303 R} \left( \frac{T_2 – T_1}{T_1 T_2} \right)\).
\(T_1 = 283 \text{ K}\).
\(t = \frac{2.303}{k} \log \frac{100}{100-x}\).
\(t_1 (10\%) = \frac{2.303}{k_1} \log \frac{100}{90} = \frac{0.1054}{k_1}\).
\(t_2 (25\%) = \frac{2.303}{k_2} \log \frac{100}{75} = \frac{0.2877}{k_2}\).
Since \(t_1 = t_2 \implies k_2 / k_1 = 0.2877 / 0.1054 = 2.73\).
\(k_2 / k_1 = 4\). \(T_1 = 293, T_2 = 313\).