NCERT Solutions Class 12 Chemistry Chapter 3: Chemical Kinetics (Complete 3.1-3.30) | LearnCBSEHub.in

NCERT Solutions

Class 12 • Chemistry • Chapter 3 • Chemical Kinetics
Question 3.1
From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants.
(i) \(3NO(g) \to N_2O(g)\) Rate = \(k[NO]^2\)
(ii) \(H_2O_2 + 3I^- + 2H^+ \to 2H_2O + I_3^-\) Rate = \(k[H_2O_2][I^-]\)
(iii) \(CH_3CHO \to CH_4 + CO\) Rate = \(k[CH_3CHO]^{3/2}\)
(iv) \(C_2H_5Cl \to C_2H_4 + HCl\) Rate = \(k[C_2H_5Cl]\)
Concept

Order (\(n\)) is the sum of powers of concentration terms in the rate law.
Units of \(k = (\text{mol L}^{-1})^{1-n} \text{ s}^{-1}\).

Solutions
  • (i) Order = 2. Unit: \((\text{mol L}^{-1})^{-1} \text{s}^{-1} = \text{L mol}^{-1} \text{s}^{-1}\).
  • (ii) Order = 1 + 1 = 2. Unit: \(\text{L mol}^{-1} \text{s}^{-1}\).
  • (iii) Order = 1.5 (3/2). Unit: \((\text{mol L}^{-1})^{-0.5} \text{s}^{-1} = \text{L}^{1/2} \text{mol}^{-1/2} \text{s}^{-1}\).
  • (iv) Order = 1. Unit: \(\text{s}^{-1}\).
Question 3.2
For the reaction: \(2A + B \to A_2B\), rate = \(k[A][B]^2\) with \(k = 2.0 \times 10^{-6} \text{ mol}^{-2} \text{ L}^2 \text{ s}^{-1}\). Calculate the initial rate when \([A] = 0.1 \text{ M}, [B] = 0.2 \text{ M}\). Calculate rate after \([A]\) is reduced to \(0.06 \text{ M}\).
1. Initial Rate
$$\text{Rate}_1 = k[A][B]^2 = 2.0 \times 10^{-6} \times (0.1) \times (0.2)^2$$ $$= 2.0 \times 10^{-6} \times 0.1 \times 0.04 = 8.0 \times 10^{-9} \text{ mol L}^{-1} \text{ s}^{-1}$$
2. Rate after reduction of A

Reacted A = \(0.1 – 0.06 = 0.04 \text{ M}\).
From stoichiometry (\(2A + B\)), B reacted = \(0.04 / 2 = 0.02 \text{ M}\).
Remaining \([B] = 0.2 – 0.02 = 0.18 \text{ M}\).

$$\text{Rate}_2 = 2.0 \times 10^{-6} \times (0.06) \times (0.18)^2$$ $$= 2.0 \times 10^{-6} \times 0.06 \times 0.0324 = 3.89 \times 10^{-9} \text{ mol L}^{-1} \text{ s}^{-1}$$
Initial Rate = \(8.0 \times 10^{-9} \text{ M/s}\)
Final Rate = \(3.89 \times 10^{-9} \text{ M/s}\)
Question 3.3
Decomposition of \(NH_3\) on platinum surface is zero order. What are rates of production of \(N_2\) and \(H_2\) if \(k = 2.5 \times 10^{-4} \text{ M s}^{-1}\)?
Analysis

Reaction: \(2NH_3 \to N_2 + 3H_2\).
For zero order, Rate = \(k\).

$$\text{Rate} = -\frac{1}{2}\frac{d[NH_3]}{dt} = \frac{d[N_2]}{dt} = \frac{1}{3}\frac{d[H_2]}{dt} = k$$

Rate of production of \(N_2 = k = 2.5 \times 10^{-4} \text{ M s}^{-1}\).

Rate of production of \(H_2 = 3k = 3 \times 2.5 \times 10^{-4} = 7.5 \times 10^{-4} \text{ M s}^{-1}\).

Question 3.4
Decomposition of dimethyl ether: Rate = \(k [P_{ether}]^{3/2}\). If pressure is in bar and time in minutes, what are units of rate and k?

Rate: Change in pressure per unit time = bar min⁻¹.

Rate Constant (k):
Rate = \(k (P)^{3/2}\) \(\implies\) bar min⁻¹ = \(k (\text{bar})^{3/2}\).
\(k = \text{bar} \text{ min}^{-1} \text{ bar}^{-1.5} = \textbf{bar}^{-1/2} \textbf{ min}^{-1}\).

Question 3.5
Mention the factors that affect the rate of a chemical reaction.
  • Concentration of reactants: Higher concentration usually increases rate.
  • Temperature: Rate generally increases with temperature.
  • Nature of reactants: Ionic reactions are faster than covalent ones.
  • Catalyst: Increases rate by lowering activation energy.
  • Surface Area: For solids, larger surface area increases rate.
  • Exposure to light: Affects photochemical reactions.
Question 3.6
A reaction is second order wrt a reactant. How is rate affected if concentration is (i) doubled, (ii) reduced to half?

Rate \(r = k[A]^2\).

  • (i) Doubled: \([A’] = 2[A]\). \(r’ = k(2A)^2 = 4k[A]^2 = 4r\). (Increases 4 times).
  • (ii) Halved: \([A’] = [A]/2\). \(r’ = k(A/2)^2 = \frac{1}{4}k[A]^2 = \frac{1}{4}r\). (Reduced to 1/4th).
Question 3.7
What is the effect of temperature on rate constant? How is it represented quantitatively?

The rate constant generally increases with an increase in temperature. For a chemical reaction, the rate constant nearly doubles for every \(10^\circ\) rise in temperature.

Quantitative representation (Arrhenius Equation):

$$k = A e^{-E_a/RT}$$

Where \(k\) = rate constant, \(A\) = Arrhenius factor, \(E_a\) = Activation energy, \(R\) = Gas constant, \(T\) = Temperature.

Question 3.8
In a pseudo first order reaction in water, calculate the average rate between 30 to 60 seconds. Data: t=30, [A]=0.31; t=60, [A]=0.17.
$$R_{avg} = -\frac{\Delta [A]}{\Delta t} = -\frac{0.17 – 0.31}{60 – 30}$$ $$= -\frac{-0.14}{30} = 4.67 \times 10^{-3} \text{ mol L}^{-1} \text{ s}^{-1}$$
Average Rate = \(4.67 \times 10^{-3} \text{ M s}^{-1}\)
Question 3.9
Reaction is first order in A and second order in B. (i) Differential rate eq? (ii) Effect if B tripled? (iii) Effect if both doubled?

(i) Equation: \(\text{Rate} = k[A][B]^2\).

(ii) B Tripled: \(r’ = k[A](3B)^2 = 9k[A][B]^2 = 9r\). (Increases 9 times).

(iii) Both Doubled: \(r” = k(2A)(2B)^2 = k(2A)(4B^2) = 8k[A][B]^2 = 8r\). (Increases 8 times).

Question 3.10
Determine orders wrt A and B from initial rate data.
Exp 1: [A]=0.2, [B]=0.3, r=5.07e-5
Exp 2: [A]=0.2, [B]=0.1, r=5.07e-5
Exp 3: [A]=0.4, [B]=0.05, r=1.43e-4
Analysis

Comparing Exp 1 & 2: [A] is constant. [B] changes from 0.3 to 0.1. Rate stays \(5.07 \times 10^{-5}\). Since rate is independent of [B], order wrt B is 0.

Comparing Exp 1 & 3: Rate law \(r = k[A]^x\).
\(\frac{1.43 \times 10^{-4}}{5.07 \times 10^{-5}} = \left(\frac{0.4}{0.2}\right)^x\).
\(2.82 \approx 2^x \implies x \approx 1.5\).

Order wrt A = 1.5, Order wrt B = 0.
Question 3.11
Determine rate law and rate constant for \(2A + B \to C + D\) from data table.
1. Determine Orders

Compare I and IV: [B] is constant (0.1). [A] changes \(0.1 \to 0.4\) (4x). Rate changes \(6.0 \times 10^{-3} \to 2.40 \times 10^{-2}\) (4x). Since rate \(\propto [A]\), order wrt A = 1.

Compare II and III: [A] is constant (0.3). [B] changes \(0.2 \to 0.4\) (2x). Rate changes \(7.2 \times 10^{-2} \to 2.88 \times 10^{-1}\) (4x). Since rate \(\propto [B]^2\), order wrt B = 2.

Rate Law: \(\text{Rate} = k[A][B]^2\).

2. Calculate k

Using Exp I: \(6.0 \times 10^{-3} = k(0.1)(0.1)^2 = k(0.001)\).

$$k = \frac{6.0 \times 10^{-3}}{10^{-3}} = 6.0 \text{ L}^2 \text{ mol}^{-2} \text{ min}^{-1}$$
Rate = \(k[A][B]^2\), \(k = 6.0\).
Question 3.12
Reaction is first order in A and zero order in B. Fill in the blanks.

Rate = \(k[A]\). From Exp I: \(2.0 \times 10^{-2} = k(0.1) \implies k = 0.2 \text{ min}^{-1}\).

  • Exp II: Rate = \(4.0 \times 10^{-2}\). Rate = \(0.2 [A] \implies [A] = 0.2 \text{ M}\).
  • Exp III: Rate = \(0.2 \times 0.4 = 8.0 \times 10^{-2} \text{ M min}^{-1}\).
  • Exp IV: Rate = \(2.0 \times 10^{-2}\). Same as Exp I, so \([A] = 0.1 \text{ M}\).
Question 3.13
Calculate half-life for first order reaction with k: (i) \(200 \text{ s}^{-1}\), (ii) \(2 \text{ min}^{-1}\), (iii) \(4 \text{ yr}^{-1}\).

Formula: \(t_{1/2} = \frac{0.693}{k}\).

  • (i) \(0.693/200 = 3.465 \times 10^{-3} \text{ s}\).
  • (ii) \(0.693/2 = 0.3465 \text{ min}\).
  • (iii) \(0.693/4 = 0.173 \text{ years}\).
Question 3.14
Half-life of 14C is 5730 years. Sample has 80% of 14C found in living tree. Estimate age.
1. Decay Constant
$$k = \frac{0.693}{5730} \approx 1.21 \times 10^{-4} \text{ yr}^{-1}$$
2. Age Calculation

Formula: \(t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}\).

Here \([R]_0 = 100, [R] = 80\).

$$t = \frac{2.303}{1.21 \times 10^{-4}} \log \frac{100}{80}$$ $$t = 19033 \times \log(1.25) = 19033 \times 0.0969 \approx 1845 \text{ years}$$
Age \(\approx 1845\) years.
Question 3.15
Decomposition of \(N_2O_5\). Analyze data (plot [N2O5] vs t, find rate law, half-life, rate constant).
vs t]
Analysis
  • (i) Plot [A] vs t: Curve shows exponential decay.
  • (ii) Half-life from graph: Initial = 1.63. Half = 0.815. Corresponds to \(t \approx 1440 \text{ s}\).
  • (iii) Graph log[A] vs t: Yields a straight line, confirming First Order.
  • (iv) Rate Law: Rate = \(k[N_2O_5]\).
  • (v) Rate Constant: Slope of log plot = \(-k/2.303\). Slope \(\approx -2.09 \times 10^{-4}\).
    \(k = 2.303 \times 2.09 \times 10^{-4} = 4.82 \times 10^{-4} \text{ s}^{-1}\).
  • (vi) Calc Half-life: \(0.693 / 4.82 \times 10^{-4} \approx 1438 \text{ s}\). (Matches graph).
Question 3.16
Rate constant for first order is \(60 \text{ s}^{-1}\). Time to reduce to 1/16th initial value?
Calculation

\([R] = [R]_0 / 16\).
Using \(t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}\).

$$t = \frac{2.303}{60} \log(16) = \frac{2.303}{60} \times 1.204$$ $$t = 0.046 \text{ s} = 4.6 \times 10^{-2} \text{ s}$$
Time \(\approx 4.6 \times 10^{-2} \text{ s}\)
Question 3.17
Half-life of 90Sr is 28.1 years. If 1\(\mu\)g absorbed, amount remaining after 10 and 60 years?
1. Rate Constant

\(k = 0.693 / 28.1 = 0.02466 \text{ yr}^{-1}\).

2. After 10 Years
$$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]} \implies 0.02466 = \frac{2.303}{10} \log \frac{1}{x}$$ $$\log(1/x) = 0.107 \implies 1/x = 1.279 \implies x = 0.78 \mu\text{g}$$
3. After 60 Years
$$\log(1/x) = \frac{0.02466 \times 60}{2.303} = 0.6425$$ $$1/x = 4.39 \implies x = 0.227 \mu\text{g}$$
After 10y: 0.78 \(\mu\)g. After 60y: 0.23 \(\mu\)g.
Question 3.18
Show that for a first order reaction, time for 99% completion is twice the time for 90% completion.
Proof

For 99% completion: \([R] = 0.01 [R]_0\).
\(t_{99} = \frac{2.303}{k} \log \frac{100}{1} = \frac{2.303}{k} \times 2\).

For 90% completion: \([R] = 0.10 [R]_0\).
\(t_{90} = \frac{2.303}{k} \log \frac{100}{10} = \frac{2.303}{k} \times 1\).

Ratio: \(t_{99} / t_{90} = 2 / 1 = 2\).

Hence, \(t_{99\%} = 2 \times t_{90\%}\).
Question 3.19
First order reaction takes 40 min for 30% decomposition. Calculate \(t_{1/2}\).
1. Rate Constant

\([R]_0 = 100, [R] = 70\). \(t = 40 \text{ min}\).

$$k = \frac{2.303}{40} \log \frac{100}{70} = \frac{2.303}{40} \times 0.1549 = 8.918 \times 10^{-3} \text{ min}^{-1}$$
2. Half-life
$$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{8.918 \times 10^{-3}} \approx 77.7 \text{ min}$$
Half-life \(\approx 77.7\) min.
Question 3.20
Decomposition of azoisopropane to hexane and nitrogen. Calculate k from pressure data. P(0)=35, P(360)=54.
Calculation

\(A \to B + C\). \(P_0 = 35\).
At time t, \(P_{total} = P_0 + p\). Reactant Pressure \(P_A = P_0 – p = P_0 – (P_t – P_0) = 2P_0 – P_t\).

At \(t=360\), \(P_t = 54\).
\(P_A = 2(35) – 54 = 70 – 54 = 16 \text{ mm}\).

$$k = \frac{2.303}{360} \log \frac{35}{16} = \frac{2.303}{360} \times 0.34 = 2.17 \times 10^{-3} \text{ s}^{-1}$$
k = \(2.17 \times 10^{-3} \text{ s}^{-1}\)
Question 3.21
Decomposition of \(SO_2Cl_2\). Calculate rate when total pressure is 0.65 atm. Data: P(0)=0.5, P(100)=0.6.
1. Calculate k

\(P_A = 2P_0 – P_t\). At t=100, \(P_t = 0.6\).
\(P_A = 2(0.5) – 0.6 = 0.4 \text{ atm}\).

$$k = \frac{2.303}{100} \log \frac{0.5}{0.4} = 2.23 \times 10^{-3} \text{ s}^{-1}$$
2. Rate at P_t = 0.65

\(P_{SO2Cl2} = 2(0.5) – 0.65 = 0.35 \text{ atm}\).
Rate = \(k \times P_{SO2Cl2} = 2.23 \times 10^{-3} \times 0.35 = 7.8 \times 10^{-4} \text{ atm s}^{-1}\).

Rate = \(7.8 \times 10^{-4} \text{ atm s}^{-1}\)
Question 3.22
Rate constants for decomposition of N2O5 at various temps. Draw ln k vs 1/T. Calc A and Ea.
[Image of Graph ln k vs 1/T]
Method

1. Convert T to Kelvin and k to ln k.
2. Plot ln k (y) vs 1/T (x).
3. Slope = \(-E_a/R\). Intercept = ln A.
Using data points (e.g., T=0°C and T=20°C):
Slope \(\approx -12300 \text{ K}\). \(E_a = -\text{Slope} \times R = 12300 \times 8.314 \approx 102 \text{ kJ/mol}\).
Pre-exponential factor \(A\) can be calculated from \(k = A e^{-E_a/RT}\).

Question 3.23
k = \(2.418 \times 10^{-5} \text{ s}^{-1}\) at 546 K. \(E_a = 179.9 \text{ kJ/mol}\). Calculate A.
Calculation

\(\log k = \log A – \frac{E_a}{2.303 RT}\).

$$\log(2.418 \times 10^{-5}) = \log A – \frac{179900}{2.303 \times 8.314 \times 546}$$ $$-4.6165 = \log A – 17.208$$ $$\log A = 12.59 \implies A = 3.9 \times 10^{12} \text{ s}^{-1}$$
A = \(3.9 \times 10^{12} \text{ s}^{-1}\)
Question 3.24
Consider reaction \(A \to \text{Products}\) with \(k = 2.0 \times 10^{-2} \text{ s}^{-1}\). Calc conc of A after 100 s if initial is 1.0 M.
Formula

\([A] = [A]_0 e^{-kt}\).

$$[A] = 1.0 \times e^{-(2.0 \times 10^{-2} \times 100)} = e^{-2}$$ $$[A] = 1 / 7.389 = 0.135 \text{ M}$$
Remaining Concentration = 0.135 M
Question 3.25
Sucrose decomposition (1st order), \(t_{1/2} = 3.00 \text{ hours}\). What fraction remains after 8 hours?
Calculation

\(k = 0.693 / 3 = 0.231 \text{ hr}^{-1}\).
Using \([R] = [R]_0 e^{-kt}\):

$$\frac{[R]}{[R]_0} = e^{-(0.231 \times 8)} = e^{-1.848}$$ $$\text{Fraction} = 0.158$$
Fraction remaining = 0.158
Question 3.26
Decomposition follows \(k = (4.5 \times 10^{11} \text{s}^{-1}) e^{-28000 K/T}\). Calculate \(E_a\).
Comparison

Compare with \(k = A e^{-E_a/RT}\).
\(E_a/R = 28000 \text{ K}\).

$$E_a = 28000 \times R = 28000 \times 8.314 \text{ J/mol}$$ $$E_a = 232792 \text{ J/mol} = 232.79 \text{ kJ/mol}$$
Activation Energy = 232.79 kJ/mol
Question 3.27
\(H_2O_2\) decomposition: \(\log k = 14.34 – 1.25 \times 10^4 K/T\). Calculate \(E_a\) and T for \(t_{1/2} = 256 \text{ min}\).
1. Calculate Ea

Compare with \(\log k = \log A – \frac{E_a}{2.303 RT}\).
\(\frac{E_a}{2.303 R} = 1.25 \times 10^4\).
\(E_a = 1.25 \times 10^4 \times 2.303 \times 8.314 = 239.34 \text{ kJ/mol}\).

2. Calculate T

\(k = 0.693 / (256 \times 60) = 4.51 \times 10^{-5} \text{ s}^{-1}\).
\(\log(4.51 \times 10^{-5}) = 14.34 – \frac{1.25 \times 10^4}{T}\).
\(-4.35 = 14.34 – \frac{12500}{T} \implies \frac{12500}{T} = 18.69\).
\(T = 12500 / 18.69 \approx 669 \text{ K}\).

\(E_a = 239.34 \text{ kJ/mol}\), T = 669 K.
Question 3.28
\(k_1 = 4.5 \times 10^3 \text{ s}^{-1}\) at \(10^\circ \text{C}\). \(E_a = 60 \text{ kJ/mol}\). At what T will \(k_2 = 1.5 \times 10^4 \text{ s}^{-1}\)?
Formula

\(\log \frac{k_2}{k_1} = \frac{E_a}{2.303 R} \left( \frac{T_2 – T_1}{T_1 T_2} \right)\).
\(T_1 = 283 \text{ K}\).

$$\log \frac{1.5 \times 10^4}{4.5 \times 10^3} = \log 3.33 = 0.522$$ $$0.522 = \frac{60000}{19.147} \left( \frac{T_2 – 283}{283 T_2} \right)$$ $$0.522 = 3133.6 \left( \frac{T_2 – 283}{283 T_2} \right)$$ $$0.000166 = \frac{T_2 – 283}{283 T_2} \implies 0.047 T_2 = T_2 – 283$$ $$0.953 T_2 = 283 \implies T_2 \approx 297 \text{ K} = 24^\circ \text{C}$$
Temperature = \(24^\circ \text{C}\)
Question 3.29
Time for 10% completion at 298K = Time for 25% completion at 308K. If A = \(4 \times 10^{10} \text{ s}^{-1}\), calculate k at 318K and \(E_a\).
1. Relation between k values

\(t = \frac{2.303}{k} \log \frac{100}{100-x}\).
\(t_1 (10\%) = \frac{2.303}{k_1} \log \frac{100}{90} = \frac{0.1054}{k_1}\).
\(t_2 (25\%) = \frac{2.303}{k_2} \log \frac{100}{75} = \frac{0.2877}{k_2}\).
Since \(t_1 = t_2 \implies k_2 / k_1 = 0.2877 / 0.1054 = 2.73\).

2. Calculate Ea
$$\log(2.73) = \frac{E_a}{2.303 R} \left( \frac{308 – 298}{308 \times 298} \right)$$ $$0.436 = \frac{E_a}{19.147} \left( \frac{10}{91784} \right)$$ $$E_a = \frac{0.436 \times 19.147 \times 91784}{10} \approx 76623 \text{ J/mol} = 76.6 \text{ kJ/mol}$$
3. Calculate k at 318K
$$\log k = \log(4 \times 10^{10}) – \frac{76623}{2.303 \times 8.314 \times 318}$$ $$\log k = 10.602 – 12.58 = -1.978$$ $$k = 10^{-1.978} \approx 1.05 \times 10^{-2} \text{ s}^{-1}$$
\(E_a = 76.6 \text{ kJ/mol}\), \(k_{318} \approx 1.05 \times 10^{-2} \text{ s}^{-1}\)
Question 3.30
Rate quadruples when T changes from 293 K to 313 K. Calculate \(E_a\).
Calculation

\(k_2 / k_1 = 4\). \(T_1 = 293, T_2 = 313\).

$$\log 4 = \frac{E_a}{2.303 \times 8.314} \left( \frac{313 – 293}{293 \times 313} \right)$$ $$0.602 = \frac{E_a}{19.147} \left( \frac{20}{91709} \right)$$ $$E_a = \frac{0.602 \times 19.147 \times 91709}{20} \approx 52863 \text{ J/mol}$$
Activation Energy \(\approx 52.86 \text{ kJ/mol}\)
learncbsehub.in