Q1
From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm. The radius of the circle is: (A) 7 cm (B) 12 cm (C) 15 cm (D) 24.5 cm
Let $O$ be the center and $T$ be the point of contact.
Given: $OQ = 25$ cm (Hypotenuse), Tangent $QT = 24$ cm.
Since radius $\perp$ tangent, $\triangle OTQ$ is a right triangle.
$$OT^2 + QT^2 = OQ^2$$
$$OT^2 + 24^2 = 25^2 \Rightarrow OT^2 + 576 = 625$$
$$OT^2 = 49 \Rightarrow OT = 7 \text{ cm}$$
✔️ (A) 7 cm