Q1
Solve the following pair of linear equations by the elimination method and the substitution method.
(i) $x + y = 5$ and $2x – 3y = 4$
By Elimination Method:
$$x + y = 5 \quad \text{…(1)}$$
$$2x – 3y = 4 \quad \text{…(2)}$$
Multiply equation (1) by 3 to make coefficients of $y$ equal:
$$3x + 3y = 15 \quad \text{…(3)}$$
Add equation (2) and (3):
$$(2x – 3y) + (3x + 3y) = 4 + 15$$
$$5x = 19 \Rightarrow x = \frac{19}{5}$$
Substitute $x$ in (1):
$$\frac{19}{5} + y = 5 \Rightarrow y = 5 – \frac{19}{5} = \frac{25 – 19}{5} = \frac{6}{5}$$
✔️ x = 19/5, y = 6/5
(ii) $3x + 4y = 10$ and $2x – 2y = 2$
By Elimination Method:
$$3x + 4y = 10 \quad \text{…(1)}$$
$$2x – 2y = 2 \quad \text{…(2)}$$
Divide equation (2) by 2:
$$x – y = 1 \quad \text{…(3)}$$
Multiply equation (3) by 4:
$$4x – 4y = 4 \quad \text{…(4)}$$
Add (1) and (4):
$$3x + 4x = 10 + 4 \Rightarrow 7x = 14 \Rightarrow x = 2$$
Substitute $x=2$ in (3):
$$2 – y = 1 \Rightarrow y = 1$$
✔️ x = 2, y = 1
(iii) $3x – 5y – 4 = 0$ and $9x = 2y + 7$
Rewrite in standard form:
$$3x – 5y = 4 \quad \text{…(1)}$$
$$9x – 2y = 7 \quad \text{…(2)}$$
Multiply equation (1) by 3:
$$9x – 15y = 12 \quad \text{…(3)}$$
Subtract equation (3) from (2):
$$(9x – 2y) – (9x – 15y) = 7 – 12$$
$$13y = -5 \Rightarrow y = -\frac{5}{13}$$
Substitute $y$ in (1):
$$3x – 5(-\frac{5}{13}) = 4$$
$$3x + \frac{25}{13} = 4 \Rightarrow 3x = 4 – \frac{25}{13} = \frac{52-25}{13} = \frac{27}{13}$$
$$x = \frac{9}{13}$$
✔️ x = 9/13, y = -5/13
(iv) $\frac{x}{2} + \frac{2y}{3} = -1$ and $x – \frac{y}{3} = 3$
Simplify equations by clearing fractions.
Multiply first eq by 6:
$$3x + 4y = -6 \quad \text{…(1)}$$
Multiply second eq by 3:
$$3x – y = 9 \quad \text{…(2)}$$
Subtract (2) from (1):
$$(3x + 4y) – (3x – y) = -6 – 9$$
$$5y = -15 \Rightarrow y = -3$$
Substitute $y=-3$ in (2):
$$3x – (-3) = 9 \Rightarrow 3x + 3 = 9 \Rightarrow 3x = 6 \Rightarrow x = 2$$
✔️ x = 2, y = -3