Q1
In $\Delta ABC$, right-angled at B, AB = 24 cm, BC = 7 cm. Determine: (i) sin A, cos A (ii) sin C, cos C
By Pythagoras theorem: $AC^2 = AB^2 + BC^2$.
$$AC^2 = (24)^2 + (7)^2 = 576 + 49 = 625$$
$$AC = \sqrt{625} = 25 \text{ cm}$$
(i) For angle A:
Perpendicular (BC) = 7, Base (AB) = 24, Hypotenuse (AC) = 25.
$$\sin A = \frac{BC}{AC} = \frac{7}{25}$$
$$\cos A = \frac{AB}{AC} = \frac{24}{25}$$
✔️ sin A = 7/25, cos A = 24/25
(ii) For angle C:
Perpendicular (AB) = 24, Base (BC) = 7, Hypotenuse (AC) = 25.
$$\sin C = \frac{AB}{AC} = \frac{24}{25}$$
$$\cos C = \frac{BC}{AC} = \frac{7}{25}$$
✔️ sin C = 24/25, cos C = 7/25