Q1
Evaluate the following:
(i) $\sin 60^\circ \cos 30^\circ + \sin 30^\circ \cos 60^\circ$
Substitute values:
$$= \left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right)\left(\frac{1}{2}\right)$$
$$= \frac{3}{4} + \frac{1}{4} = \frac{4}{4} = 1$$
✔️ 1
(ii) $2 \tan^2 45^\circ + \cos^2 30^\circ – \sin^2 60^\circ$
Substitute values:
$$= 2(1)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 – \left(\frac{\sqrt{3}}{2}\right)^2$$
$$= 2(1) + \frac{3}{4} – \frac{3}{4} = 2$$
✔️ 2
(iii) $\frac{\cos 45^\circ}{\sec 30^\circ + \text{cosec } 30^\circ}$
Substitute values:
$$= \frac{1/\sqrt{2}}{2/\sqrt{3} + 2} = \frac{1/\sqrt{2}}{(2 + 2\sqrt{3})/\sqrt{3}} = \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2(1 + \sqrt{3})}$$
$$= \frac{\sqrt{3}}{2\sqrt{2}(1 + \sqrt{3})}$$
Rationalize denominator:
$$= \frac{\sqrt{3}(\sqrt{3}-1)}{2\sqrt{2}(\sqrt{3}+1)(\sqrt{3}-1)} = \frac{3 – \sqrt{3}}{2\sqrt{2}(3-1)} = \frac{3-\sqrt{3}}{4\sqrt{2}}$$
Multiply by $\sqrt{2}/\sqrt{2}$:
$$= \frac{(3-\sqrt{3})\sqrt{2}}{4\sqrt{2}\cdot\sqrt{2}} = \frac{3\sqrt{2} – \sqrt{6}}{8}$$
✔️ $\frac{3\sqrt{2} – \sqrt{6}}{8}$
(iv) $\frac{\sin 30^\circ + \tan 45^\circ – \text{cosec } 60^\circ}{\sec 30^\circ + \cos 60^\circ + \cot 45^\circ}$
Substitute values:
$$= \frac{\frac{1}{2} + 1 – \frac{2}{\sqrt{3}}}{\frac{2}{\sqrt{3}} + \frac{1}{2} + 1} = \frac{\frac{3}{2} – \frac{2}{\sqrt{3}}}{\frac{3}{2} + \frac{2}{\sqrt{3}}}$$
$$= \frac{\frac{3\sqrt{3}-4}{2\sqrt{3}}}{\frac{3\sqrt{3}+4}{2\sqrt{3}}} = \frac{3\sqrt{3}-4}{3\sqrt{3}+4}$$
Rationalize:
$$= \frac{(3\sqrt{3}-4)^2}{(3\sqrt{3})^2 – 4^2} = \frac{27 + 16 – 24\sqrt{3}}{27 – 16} = \frac{43 – 24\sqrt{3}}{11}$$
✔️ $\frac{43 – 24\sqrt{3}}{11}$
(v) $\frac{5 \cos^2 60^\circ + 4 \sec^2 30^\circ – \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 30^\circ}$
Note: Denominator $\sin^2 30^\circ + \cos^2 30^\circ = 1$.
$$= 5(\frac{1}{2})^2 + 4(\frac{2}{\sqrt{3}})^2 – (1)^2$$
$$= 5(\frac{1}{4}) + 4(\frac{4}{3}) – 1 = \frac{5}{4} + \frac{16}{3} – 1$$
$$= \frac{15 + 64 – 12}{12} = \frac{67}{12}$$
✔️ 67/12