(i) $(\text{cosec } \theta – \cot \theta)^2 = \frac{1 – \cos \theta}{1 + \cos \theta}$
LHS:
$$= \left(\frac{1}{\sin \theta} – \frac{\cos \theta}{\sin \theta}\right)^2 = \left(\frac{1 – \cos \theta}{\sin \theta}\right)^2 = \frac{(1 – \cos \theta)^2}{\sin^2 \theta}$$
$$= \frac{(1 – \cos \theta)^2}{1 – \cos^2 \theta} = \frac{(1 – \cos \theta)(1 – \cos \theta)}{(1 – \cos \theta)(1 + \cos \theta)} = \frac{1 – \cos \theta}{1 + \cos \theta} = \text{RHS}$$
✔️ Proved
(ii) $\frac{\cos A}{1 + \sin A} + \frac{1 + \sin A}{\cos A} = 2 \sec A$
LHS:
$$= \frac{\cos^2 A + (1 + \sin A)^2}{\cos A(1 + \sin A)} = \frac{\cos^2 A + 1 + \sin^2 A + 2\sin A}{\cos A(1 + \sin A)}$$
$$= \frac{1 + 1 + 2\sin A}{\cos A(1 + \sin A)} = \frac{2(1 + \sin A)}{\cos A(1 + \sin A)} = \frac{2}{\cos A} = 2 \sec A = \text{RHS}$$
✔️ Proved
(iii) $\frac{\tan \theta}{1 – \cot \theta} + \frac{\cot \theta}{1 – \tan \theta} = 1 + \sec \theta \text{cosec } \theta$
LHS: Convert to sin/cos.
$$= \frac{\frac{\sin}{\cos}}{1 – \frac{\cos}{\sin}} + \frac{\frac{\cos}{\sin}}{1 – \frac{\sin}{\cos}} = \frac{\sin^2}{\cos(\sin – \cos)} + \frac{\cos^2}{\sin(\cos – \sin)}$$
$$= \frac{\sin^2}{\cos(\sin – \cos)} – \frac{\cos^2}{\sin(\sin – \cos)} = \frac{\sin^3 – \cos^3}{\sin \cos (\sin – \cos)}$$
Use $a^3 – b^3 = (a-b)(a^2 + ab + b^2)$:
$$= \frac{(\sin – \cos)(\sin^2 + \cos^2 + \sin \cos)}{\sin \cos (\sin – \cos)} = \frac{1 + \sin \cos}{\sin \cos}$$
$$= \frac{1}{\sin \cos} + 1 = \text{cosec } \theta \sec \theta + 1 = \text{RHS}$$
✔️ Proved
(iv) $\frac{1 + \sec A}{\sec A} = \frac{\sin^2 A}{1 – \cos A}$
LHS: $\frac{1 + 1/\cos}{1/\cos} = \frac{(\cos+1)/\cos}{1/\cos} = \cos A + 1$.
RHS: $\frac{1 – \cos^2 A}{1 – \cos A} = \frac{(1-\cos A)(1+\cos A)}{1-\cos A} = 1 + \cos A$.
✔️ LHS = RHS
(v) $\frac{\cos A – \sin A + 1}{\cos A + \sin A – 1} = \text{cosec } A + \cot A$
Divide Numerator and Denominator by $\sin A$:
$$= \frac{\cot A – 1 + \text{cosec } A}{\cot A + 1 – \text{cosec } A} = \frac{(\cot A + \text{cosec } A) – 1}{1 – \text{cosec } A + \cot A}$$
Replace $1$ with $\text{cosec}^2 A – \cot^2 A$:
$$= \frac{(\cot + \text{cosec}) – (\text{cosec}^2 – \cot^2)}{1 – \text{cosec} + \cot}$$
$$= \frac{(\cot + \text{cosec})[1 – (\text{cosec} – \cot)]}{1 – \text{cosec} + \cot} = \cot A + \text{cosec } A$$
✔️ Proved
(vi) $\sqrt{\frac{1 + \sin A}{1 – \sin A}} = \sec A + \tan A$
Rationalize inside root:
$$= \sqrt{\frac{(1 + \sin A)(1 + \sin A)}{(1 – \sin A)(1 + \sin A)}} = \sqrt{\frac{(1 + \sin A)^2}{1 – \sin^2 A}} = \sqrt{\frac{(1 + \sin A)^2}{\cos^2 A}}$$
$$= \frac{1 + \sin A}{\cos A} = \frac{1}{\cos A} + \frac{\sin A}{\cos A} = \sec A + \tan A$$
✔️ Proved
(vii) $\frac{\sin \theta – 2 \sin^3 \theta}{2 \cos^3 \theta – \cos \theta} = \tan \theta$
LHS:
$$= \frac{\sin \theta(1 – 2 \sin^2 \theta)}{\cos \theta(2 \cos^2 \theta – 1)}$$
Using $\cos 2\theta$ forms (or simplify): $1 – 2\sin^2 \theta = \cos^2 – \sin^2$ and $2\cos^2 – 1 = \cos^2 – \sin^2$.
So the bracket terms cancel out.
$$= \frac{\sin \theta}{\cos \theta} = \tan \theta = \text{RHS}$$
✔️ Proved
(viii) $(\sin A + \text{cosec } A)^2 + (\cos A + \sec A)^2 = 7 + \tan^2 A + \cot^2 A$
Expand:
$$= (\sin^2 + \text{cosec}^2 + 2) + (\cos^2 + \sec^2 + 2)$$
$$= (\sin^2 + \cos^2) + \text{cosec}^2 + \sec^2 + 4$$
$$= 1 + (1 + \cot^2) + (1 + \tan^2) + 4$$
$$= 1 + 1 + 1 + 4 + \cot^2 + \tan^2 = 7 + \tan^2 A + \cot^2 A$$
✔️ Proved
(ix) $(\text{cosec } A – \sin A)(\sec A – \cos A) = \frac{1}{\tan A + \cot A}$
LHS: $(\frac{1}{\sin} – \sin)(\frac{1}{\cos} – \cos) = (\frac{1-\sin^2}{\sin})(\frac{1-\cos^2}{\cos}) = \frac{\cos^2 \sin^2}{\sin \cos} = \sin A \cos A$.
RHS: $\frac{1}{\frac{\sin}{\cos} + \frac{\cos}{\sin}} = \frac{1}{\frac{\sin^2 + \cos^2}{\sin \cos}} = \frac{\sin \cos}{1} = \sin A \cos A$.
✔️ LHS = RHS
(x) $\left(\frac{1 + \tan^2 A}{1 + \cot^2 A}\right) = \left(\frac{1 – \tan A}{1 – \cot A}\right)^2 = \tan^2 A$
Part 1: $\frac{\sec^2 A}{\text{cosec}^2 A} = \tan^2 A$ (See Q3 iv).
Part 2: $\left(\frac{1 – \tan A}{1 – 1/\tan A}\right)^2 = \left(\frac{1 – \tan A}{\frac{\tan A – 1}{\tan A}}\right)^2 = \left(\frac{(1-\tan A)\tan A}{-(1-\tan A)}\right)^2$
$$= (-\tan A)^2 = \tan^2 A$$
✔️ Proved